38,586 research outputs found

    On the Incommensurate Phase in Modulated Heisenberg Chains

    Full text link
    Using the density matrix renormalization group method (DMRG) we calculate the magnetization of frustrated S=1/2 Heisenberg chains for various modulation patterns of the nearest neighbour coupling: commensurate, incommensurate with sinusoidal modulation and incommensurate with solitonic modulation. We focus on the order of the phase transition from the commensurate dimerized phase (D) to the incommensurate phase (I). It is shown that the order of the phase transition depends sensitively on the model. For the solitonic model in particular, a kk-dependent elastic energy modifies the order of the transition. Furthermore, we calculate gaps in the incommensurate phase in adiabatic approximation.Comment: 8 pages, 9 figure

    Fast high--voltage amplifiers for driving electro-optic modulators

    Full text link
    We describe five high-voltage (60 to 550V peak to peak), high-speed (1-300ns rise time; 1.3-300MHz bandwidth) linear amplifiers for driving capacitive or resistive loads such as electro-optic modulators. The amplifiers use bipolar transistors in various topologies. Two use electron tubes to overcome the speed limitations of high-voltage semiconductors. All amplifiers have been built. Measured performance data is given for each.Comment: 9pages, 6figures, 6tables, to appear in Review of Scientific Instrument

    COMPLETE SOLUTION OF THE XXZ-MODEL ON FINITE RINGS. DYNAMICAL STRUCTURE FACTORS AT ZERO TEMPERATURE.

    Full text link
    The finite size effects of the dynamical structure factors in the XXZ-model are studied in the euclidean time (τ)(\tau)-representation. Away from the critical momentum p=πp=\pi finite size effects turn out to be small except for the large τ\tau limit. The large finite size effects at the critical momentum p=πp=\pi signal the emergence of infrared singularities in the spectral (ω)(\omega)-representation of the dynamical structure factors.Comment: PostScript file with 12 pages + 11 figures uuencoded compresse

    Synchronous Phase Shift at LHC

    Full text link
    The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measurements of the individual bunch phase give us information about the electron cloud build-up inside the batch and from batch to batch.Comment: Presented at ECLOUD'12: Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d'Elba, Italy, 5-9 June 201

    Reactions at polymer interfaces: A Monte Carlo Simulation

    Full text link
    Reactions at a strongly segregated interface of a symmetric binary polymer blend are investigated via Monte Carlo simulations. End functionalized homopolymers of different species interact at the interface instantaneously and irreversibly to form diblock copolymers. The simulations, in the framework of the bond fluctuation model, determine the time dependence of the copolymer production in the initial and intermediate time regime for small reactant concentration ρ0Rg3=0.163...0.0406\rho_0 R_g^3=0.163 ... 0.0406. The results are compared to recent theories and simulation data of a simple reaction diffusion model. For the reactant concentration accessible in the simulation, no linear growth of the copolymer density is found in the initial regime, and a t\sqrt{t}-law is observed in the intermediate stage.Comment: to appear in Macromolecule

    Integrability in Yang-Mills theory on the light cone beyond leading order

    Full text link
    The one-loop dilatation operator in Yang-Mills theory possesses a hidden integrability symmetry in the sector of maximal helicity Wilson operators. We calculate two-loop corrections to the dilatation operator and demonstrate that while integrability is broken for matter in the fundamental representation of the SU(3) gauge group, for the adjoint SU(N_c) matter it survives the conformal symmetry breaking and persists in supersymmetric N=1, N=2 and N=4 Yang-Mills theories.Comment: 4 pages, 2 figure

    Physical properties of botanical surfactants.

    Get PDF
    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or use dfreshandchopped. The neutral barsoapwasusedasa positive control. The drying and grinding of samples were the preparation method that resulted in higher foam col-umnheightinbothspeciesbut Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756and 1017respectively. Critical micelleconcentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40 mN m?1while neutral bar soap was 0.15% with 34.96 mN m?1. Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them

    The Regularizing Capacity of Metabolic Networks

    Full text link
    Despite their topological complexity almost all functional properties of metabolic networks can be derived from steady-state dynamics. Indeed, many theoretical investigations (like flux-balance analysis) rely on extracting function from steady states. This leads to the interesting question, how metabolic networks avoid complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to binary dynamics generated by simple local rules. We find that the networks' response is highly specific: Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with identical degree sequences. Already small topological modifications substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally pronounced regularization of dynamics encoded in the topology may explain, why steady-state behavior is ubiquitous in metabolism.Comment: 6 pages, 4 figure
    corecore