1,061 research outputs found
NN<sup>k</sup> networks for Content-Based Image Retrieval
This paper describes a novel interaction technique to support content-based image search in large image collections. The idea is to represent each image as a vertex in a directed graph. Given a set of image features, an arc is established between two images if there exists at least one combination of features for which one image is retrieved as the nearest neighbour of the other. Each arc is weighted by the proportion of feature combinations for which the nearest neighbour relationship holds. By thus integrating the retrieval results over all possible feature combinations, the resulting network helps expose the semantic richness of images and thus provides an elegant solution to the problem of feature weighting in content-based image retrieval.We give details of the method used for network generation and describe the ways a user can interact with the structure. We also provide an analysis of the network’s topology and provide quantitative evidence for the usefulness of the technique
Field-induced gap in the spin-1/2 antiferromagnetic Heisenberg chain: A density matrix renormalization group study
We study the spin-1/2 antiferromagnetic Heisenberg chain in both uniform and
(perpendicular) staggered magnetic fields using the density-matrix
renormalization-group method. This model has been shown earlier to describe the
physics of the copper benzoate materials in magnetic field. In the present
work, we extend the study to more general case for a systematic investigation
of the field-induced gap and related properties of the spin-1/2
antiferromagnetic Heisenberg chain. In particular, we explore the high magnetic
field regime where interesting behaviors in the field-induced gap,
magnetization, and spin correlation functions are found. Careful examination of
the low energy properties and magnetization reveals interesting competing
effects of the staggered and uniform fields. The incommensurate behavior in the
spin correlation functions is demonstrated and discussed in detail. The present
work reproduces earlier results in good agreement with experimental data on
copper benzoate and predicts new interesting field-induced features at very
high magnetic field.Comment: 8 pages, 6 figure
Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations
We investigate how the dynamics of a single chain influences the kinetics of
early stage phase separation in a symmetric binary polymer mixture. We consider
quenches from the disordered phase into the region of spinodal instability. On
a mean field level we approach this problem with two methods: a dynamical
extension of the self consistent field theory for Gaussian chains, with the
density variables evolving in time, and the method of the external potential
dynamics where the effective external fields are propagated in time. Different
wave vector dependencies of the kinetic coefficient are taken into account.
These early stages of spinodal decomposition are also studied through Monte
Carlo simulations employing the bond fluctuation model that maps the chains --
in our case with 64 effective segments -- on a coarse grained lattice. The
results obtained through self consistent field calculations and Monte Carlo
simulations can be compared because the time, length, and temperature scales
are mapped onto each other through the diffusion constant, the chain extension,
and the energy of mixing. The quantitative comparison of the relaxation rate of
the global structure factor shows that a kinetic coefficient according to the
Rouse model gives a much better agreement than a local, i.e. wave vector
independent, kinetic factor. Including fluctuations in the self consistent
field calculations leads to a shorter time span of spinodal behaviour and a
reduction of the relaxation rate for smaller wave vectors and prevents the
relaxation rate from becoming negative for larger values of the wave vector.
This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin
Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet
The exact expression derived by Bougourzi, Couture, and Kacir for the
2-spinon contribution to the dynamic spin structure factor
of he one-dimensional =1/2 Heisenberg antiferromagnet at is evaluated
for direct comparison with finite-chain transition rates () and an
approximate analytical result previously inferred from finite- data, sum
rules, and Bethe-ansatz calculations. The 2-spinon excitations account for
72.89% of the total intensity in . The singularity structure
of the exact result is determined analytically and its spectral-weight
distribution evaluated numerically over the entire range of the 2-spinon
continuum. The leading singularities of the frequency-dependent spin
autocorrelation function, static spin structure factor, and -dependent
susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript
Onset of magnetism in B2 transition metals aluminides
Ab initio calculation results for the electronic structure of disordered bcc
Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6)
alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl,
NiAl) phases with point defects are presented. The calculations were performed
using the coherent potential approximation within the Korringa-Kohn-Rostoker
method (KKR-CPA) for the disordered case and the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied
in particular the onset of magnetism in Fe-Al and Co-Al systems as a function
of the defect structure. We found the appearance of large local magnetic
moments associated with the transition metal (TM) antisite defect in FeAl and
CoAl compounds, in agreement with the experimental findings. Moreover, we found
that any vacancies on both sublattices enhance the magnetic moments via
reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are
ferromagnetically ordered for the whole range of composition studied, whereas
Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in
Phys.Rev.
Phase diagrams of the generalized spin-1/2 ladder under staggered field and dimerization: A renormalization group study
In the weak-coupling regime of the continuous theories, two sets of one-loop
renormalization group equations are derived and solved to disclose the phase
diagrams of the antiferromagnetic generalized two-leg spin-1/2 ladder under the
effect of (I) a staggered external magnetic field and (II) an explicit
dimerization. In model (I), the splitting of the SU(2) critical line into
U(1) and Z critical surfaces is observed; while in model (II), two critical
surfaces arising from their underlying critical lines with SU(2) and Z
characteristics merge into an SU(2) critical surface on the line where the
model attains its highest symmetry.Comment: 10 pages, 9 figure
Magnetization of coupled spin clusters in Ladder Geometry
In this paper, we construct a class of spin-1/2 antiferromagnetic (AFM)
two-chain ladder models consisting of blocks of n-spin tetrahedral clusters
alternating with two-spin rungs. For n=4 and 6 and in extended parameter
regimes, the exact ground state of the ladder is shown to be a product of the
ground states of the rungs and the n-spin blocks, in both zero and finite
magnetic fields. In the latter case, magnetization/site (m) versus magenetic
field (h) plot exhibits well-defined magnetization plateaus.Comment: 9 pages, latex, 6 figures, To be published in Phys. Rev.
Weak antiferromagnetism due to Dzyaloshinskii-Moriya interaction in BaCuOCl
The antiferromagnetic insulating cuprate BaCuOCl contains
folded CuO chains with four magnetic copper ions () per unit cell.
An underlying multiorbital Hubbard model is formulated and the superexchange
theory is developed to derive an effective spin Hamiltonian for this cuprate.
The resulting spin Hamiltonian involves a Dzyaloshinskii-Moriya term and a more
weak symmetric anisotropic exchange term besides the isotropic exchange
interaction. The corresponding Dzyaloshinskii-Moriya vectors of each magnetic
Cu-Cu bond in the chain reveal a well defined spatial order. Both, the
superexchange theory and the complementary group theoretical consideration,
lead to the same conclusion on the character of this order. The analysis of the
ground-state magnetic properties of the derived model leads to the prediction
of an additional noncollinear modulation of the antiferromagnetic structure.
This weak antiferromagnetism is restricted to one of the Cu sublattices.Comment: 13 pages, 1 table, 4 figure
Conductance as a Function of the Temperature in the Double Exchange Model
We have used the Kubo formula to calculate the temperature dependence of the
electrical conductance of the double exchange Hamiltonian. We average the
conductance over an statistical ensemble of clusters, which are obtained by
performing Monte Carlo simulations on the classical spin orientation of the
double exchange Hamiltonian. We find that for electron concentrations bigger
than 0.1, the system is metallic at all temperatures. In particular it is not
observed any change in the temperature dependence of the resistivity near the
magnetical critical temperature. The calculated resistivity near is
around ten times smaller than the experimental value. We conclude that the
double exchange model is not able to explain the metal to insulator transition
which experimentally occurs at temperatures near the magnetic critical
temperature.Comment: 6 pages, 5 figures included in the tex
Argon annealing of the oxygen-isotope exchanged manganite La_{0.8}Ca_{0.2}MnO_{3+y}
We have resolved a controversial issue concerning the oxygen-isotope shift of
the ferromagnetic transition temperature T_{C} in the manganite
La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C
observed in the normal oxygen-isotope exchanged samples is indeed intrinsic,
while a much smaller shift observed in the argon annealed samples is an
artifact. The argon annealing causes the 18O sample to partially exchange back
to the 16O isotope due to a small 16O contamination in the Ar gas. Such a
contamination is commonly caused by the oxygen outgas that is trapped in the
tubes, connectors and valves. The present results thus umambiguously
demonstrate that the observed large oxygen isotope effect is an intrinsic
property of manganites, and places an important constraint on the basic physics
of these materials.Comment: 4 pages, 3 figures, submitted to PR
- …