9,788 research outputs found

    Periodicity of free subgroup numbers modulo prime powers

    Full text link
    We completely characterise when the sequence of free subgroup numbers of a finitely generated virtually free group is ultimately periodic modulo a given prime power.Comment: AmS-LaTeX; 18 page

    General relativistic hydrodynamics in curvilinear coordinates

    Full text link
    In this paper we report on what we believe is the first successful implementation of relativistic hydrodynamics, coupled to dynamical spacetimes, in spherical polar coordinates without symmetry assumptions. We employ a high-resolution shock-capturing scheme, which requires that the equations be cast in flux-conservative form. One example of such a form is the :Valencia" formulation, which has been adopted in numerous applications, in particular in Cartesian coordinates. Here we generalize this formulation to allow for a reference-metric approach, which provides a natural framework for calculations in curvilinear coordinates. In spherical polar coordinates, for example, it allows for an analytical treatment of the singular r and sin(\theta) terms that appear in the equations. We experiment with different versions of our generalized Valencia formulation in numerical implementations of relativistic hydrodynamics for both fixed and dynamical spacetimes. We consider a number of different tests -- non-rotating and rotating relativistic stars, as well as gravitational collapse to a black hole -- to demonstrate that our formulation provides a promising approach to performing fully relativistic astrophysics simulations in spherical polar coordinates.Comment: 14 pages, 8 figures, version to be published in PR

    Numerical Relativity in Spherical Polar Coordinates: Off-center Simulations

    Full text link
    We have recently presented a new approach for numerical relativity simulations in spherical polar coordinates, both for vacuum and for relativistic hydrodynamics. Our approach is based on a reference-metric formulation of the BSSN equations, a factoring of all tensor components, as well as a partially implicit Runge-Kutta method, and does not rely on a regularization of the equations, nor does it make any assumptions about the symmetry across the origin. In order to demonstrate this feature we present here several off-centered simulations, including simulations of single black holes and neutron stars whose center is placed away from the origin of the coordinate system, as well as the asymmetric head-on collision of two black holes. We also revisit our implementation of relativistic hydrodynamics and demonstrate that a reference-metric formulation of hydrodynamics together with a factoring of all tensor components avoids problems related to the coordinate singularities at the origin and on the axes. As a particularly demanding test we present results for a shock wave propagating through the origin of the spherical polar coordinate system.Comment: 13 pages, 11 figures; matches version published in PR
    • …
    corecore