822 research outputs found

    Magnetic properties of the three-band Hubbard model

    Full text link
    We present magnetic properties of the three-band Hubbard model in the para- and antiferromagnetic phase on a hypercubic lattice calculated with the Dynamical Mean-Field Theory (DMFT). To allow for solutions with broken spin-symmetry we extended the approach to lattices with AB-like structure. Above a critical sublattice magnetization m_d=0.5 one can observe rich structures in the spectral-functions similar to the t-J model which can be related to the well known bound states for one hole in the Neel-background. In addition to the one-particle properties we discuss the static spin-susceptiblity in the paramagnetic state at the points q=0 and q=(pi,pi,pi,...) for different dopings delta. The delta-T-phase-diagram exhibits an enhanced stability of the antiferromagnetic state for electron-doped systems in comparison to hole-doped. This asymmetry in the phase diagram is in qualitative agreement with experiments for high-T_c materials.Comment: revised version, to be publishe

    Four dimensional "old minimal" N=2 supersymmetrization of R^4

    Get PDF
    We write in superspace the lagrangian containing the fourth power of the Weyl tensor in the "old minimal" d=4, N=2 supergravity, without local SO(2) symmetry. Using gauge completion, we analyze the lagrangian in components. We find out that the auxiliary fields which belong to the Weyl and compensating vector multiplets have derivative terms and therefore cannot be eliminated on-shell. Only the auxiliary fields which belong to the compensating nonlinear multiplet do not get derivatives and could still be eliminated; we check that this is possible in the leading terms of the lagrangian. We compare this result to the similar one of "old minimal" N=1 supergravity and we comment on possible generalizations to other versions of N=1,2 supergravity.Comment: 31 pages, no figures. Minor corrections. Details of the full calculation included as an appendix. Reference adde

    Influence of the Coulomb Interaction on the Chemical Equilibrium of Nuclear Systems at Break-Up

    Get PDF
    The importance of a Coulomb correction to the formalism proposed by Albergo et al. for determining the temperatures of nuclear systems at break-up and the ensities of free nucleon gases is discussed. While the proposed correction has no effect on the temperatures extracted based on double isotope ratios, it becomes non-negligible when such temperatures or densities of free nucleon gases are extracted based on multiplicities of heavier fragments of different atomic numbers

    Theoretical Analysis of a Large Momentum Beamsplitter using Bloch Oscillations

    Full text link
    In this paper, we present the implementation of Bloch oscillations in an atomic interferometer to increase the separation of the two interfering paths. A numerical model, in very good agreement with the experiment, is developed. The contrast of the interferometer and its sensitivity to phase fluctuations and to intensity fluctuations are also calculated. We demonstrate that the sensitivity to phase fluctuations can be significantly reduced by using a suitable arrangement of Bloch oscillations pulses

    Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni

    Full text link
    The scaling of the yields of heavy projectile residues from the reactions of 25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is studied. Isotopically resolved yield distributions of projectile fragments in the range Z=10-36 from these reaction pairs were measured with the MARS recoil separator in the angular range 2.7-5.3 degrees. The velocities of the residues, monotonically decreasing with Z down to Z~26-28, are employed to characterize the excitation energy. The yield ratios R21(N,Z) for each pair of systems are found to exhibit isotopic scaling (isoscaling), namely, an exponential dependence on the fragment atomic number Z and neutron number N. The isoscaling is found to occur in the residue Z range corresponding to the maximum observed excitation energies. The corresponding isoscaling parameters are alpha=0.43 and beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni system. For the Kr+Sn system, for which the experimental angular acceptance range lies inside the grazing angle, isoscaling was found to occur for Z<26 and N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically, alpha decreasing with Z and beta increasing with N. This variation is found to be related to the evolution towards isospin equilibration and, as such, it can serve as a tracer of the N/Z equilibration process. The present heavy-residue data extend the observation of isotopic scaling from the intermediate mass fragment region to the heavy-residue region. Such high-resolution mass spectrometric data can provide important information on the role of isospin in peripheral and mid-peripheral collisions, complementary to that accessible from modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Solving analytic differential equations in polynomial time over unbounded domains

    Get PDF
    In this paper we consider the computational complexity of solving initial-value problems de ned with analytic ordinary diferential equations (ODEs) over unbounded domains of Rn and Cn, under the Computable Analysis setting. We show that the solution can be computed in polynomial time over its maximal interval of de nition, provided it satis es a very generous bound on its growth, and that the function admits an analytic extension to the complex plane

    Symmetry Properties on Magnetization in the Hubbard Model at Finite Temperatures

    Full text link
    By making use of some symmetry properties of the relevant Hamiltonian, two fundamental relations between the ferromagnetic magnetization and a spin correlation function are derived for the d(=1,2,3)d (=1,2,3)-dimensional Hubbard model at finite temperatures. These can be viewed as a kind of Ward-Takahashi identities. The properties of the magnetization as a function of the applied field are discussed. The results thus obtained hold true for both repulsive and attractive on-site Coulomb interactions, and for arbitrary electron fillings.Comment: Latex file, no figur

    Black Hole Production in Particle Collisions and Higher Curvature Gravity

    Full text link
    The problem of black hole production in transplanckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R_ijkl)^2. Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is re-analyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular `Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process.Comment: 36 pp, v2: quantum wavelength limit on particle size and shock width included; curvature estimate lowered but still well above Planck value; small modifications throughout; conclusions unchange

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co

    Multilevel Monte Carlo methods

    Full text link
    The author's presentation of multilevel Monte Carlo path simulation at the MCQMC 2006 conference stimulated a lot of research into multilevel Monte Carlo methods. This paper reviews the progress since then, emphasising the simplicity, flexibility and generality of the multilevel Monte Carlo approach. It also offers a few original ideas and suggests areas for future research
    • …
    corecore