313 research outputs found

    How to Count Kinks: From the Continuum to the Lattice and Back

    Get PDF
    We investigate the matching between (1+1)-dimensional nonlinear field theories coupled to an external stochastic environment and their lattice simulations. In particular, we focus on how to obtain numerical results which are lattice-spacing independent, and on how to extract the correct effective potential which emerges from the simulations. As an application, we study the thermal production of kink-antikink pairs, obtaining a number density of pairs which is lattice-spacing independent and the effective barrier for pair production, i.e., the effective kink mass.Comment: 7 pages, 5 PostScript figures, RevTeX. Revised version to appear in Physics Letters B. References and comparison with previous works adde

    Hubble Space Telescope Constraints on the Winds and Astrospheres of Red Giant Stars

    Get PDF
    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope, focusing on spectra of the Mg II h & k lines near 2800 A in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg II surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities (V_w) are generally found to decrease with spectral type, with V_w decreasing from ~40 km/s at K2 III to ~20 km/s at M5 III. We find two new detections of astrospheric absorption, for Sigma Pup (K5 III) and Gamma Eri (M1 III). This absorption signature had previously only been detected for Alpha Tau (K5 III). For the three astrospheric detections the temperature of the wind after the termination shock correlates with V_w, but is lower than predicted by the Rankine-Hugoniot shock jump conditions, consistent with the idea that red giant termination shocks are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the Gamma Eri astrosphere is provided to explore this further.Comment: 16 pages, 8 figures, to appear in The Astrophysical Journa

    Hubble Space Telescopeconstraints on the Winds and Astrospheres of Red Giant Stars

    Get PDF
    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope, focusing on spectra of the Mg ii h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg ii surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities (V w ) are generally found to decrease with spectral type, with V w decreasing from ~40 km s−1 at K2 III to ~20 km s−1 at M5 III. We find two new detections of astrospheric absorption, for σ Pup (K5 III) and γ Eri (M1 III). This absorption signature had previously only been detected for α Tau (K5 III). For the three astrospheric detections, the temperature of the wind after the termination shock (TS) correlates with V w , but is lower than predicted by the Rankine–Hugoniot shock jump conditions, consistent with the idea that red giant TSs are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the γ Eri astrosphere is provided to explore this further

    On the uncertainty of sea-ice isostasy

    Get PDF
    During late winter 2007, coincident measurements of sea ice were collected using various sensors at an ice camp in the Beaufort Sea, Canadian Arctic. Analysis of the archived data provides new insight into sea-ice isostasy and its related R-factor through case studies at three scales using different combinations of snow and ice thickness components. At the smallest scale (\u3c1 m; point scale), isostasy is not expected, so we calculate a residual and define this as �� (‘zjey’) to describe vertical displacement due to deformation. From 1 to 10 m length scales, we explore traditional isostasy and identify a specific sequence of thickness calculations which minimize freeboard and elevation uncertainty. An effective solution exists when the R-factor is allowed to vary: ranging from 2 to 12, with mean of 5.17, mode of 5.88 and skewed distribution. At regional scales, underwater, airborne and spaceborne platforms are always missing thickness variables from either above or below sea level. For such situations, realistic agreement is found by applying small-scale skewed ranges for the R-factor. These findings encourage a broader isostasy solution as a function of potential energy and length scale. Overall, results add insight to data collection strategies and metadata characteristics of different thickness products

    Evidence for a Weak Wind from the Young Sun

    Get PDF
    The early history of the solar wind has remained largely a mystery due to the difficulty of detecting winds around young stars that can serve as analogs for the young Sun. Here we report on the detection of a wind from the 500 Myr old solar analog π1 UMa (G1.5 V), using spectroscopic observations from the Hubble Space Telescope. We detect H I Lyα absorption from the interaction region between the stellar wind and interstellar medium, i.e., the stellar astrosphere. With the assistance of hydrodynamic models of the π1 UMa astrosphere, we infer a wind only half as strong as the solar wind for this star. This suggests that the Sun and solar-like stars do not have particularly strong coronal winds in their youth.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12596

    Trajectories and Distribution of Interstellar Dust Grains In The Heliosphere

    Get PDF
    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a gr 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses

    Exploring the Possibility of O And Ne Contamination in Ulysses Observations of Interstellar Helium

    Get PDF
    We explore the possibility that interstellar O and Ne may be contributing to the particle signal from the GAS instrument on Ulysses, which is generally assumed to be entirely He. Motivating this study is the recognition that an interstellar temperature higher than any previously estimated from Ulysses data could potentially resolve a discrepancy between Ulysses He measurements and those from the Interstellar Boundary Explorer (IBEX). Contamination by O and Ne could lead to Ulysses temperature measurements that are too low. We estimate the degree of O and Ne contamination necessary to increase the inferred Ulysses temperature to 8500 K, which would be consistent with both the Ulysses and IBEX data given the same interstellar flow speed. We find that producing the desired effect requires a heavy element contamination level of ~9% of the total Ulysses/GAS signal. However, this degree of heavy element contribution is about an order of magnitude higher than expected based on our best estimates of detection efficiencies, ISM abundances, and heliospheric survival probabilities, making it unlikely that heavy element contamination is significantly affecting temperatures derived from Ulysses data

    Impact of spatial aliasing on sea-ice thickness measurements

    Get PDF
    We explore spatial aliasing of non-Gaussian distributions of sea-ice thickness. Using a heuristic model and \u3e1000 measurements, we show how different instrument footprint sizes and shapes can cluster thickness distributions into artificial modes, thereby distorting frequency distribution, making it difficult to compare and communicate information across spatial scales. This problem has not been dealt with systematically in sea ice until now, largely because it appears to incur no significant change in integrated thickness which often serves as a volume proxy. Concomitantly, demands are increasing for thickness distribution as a resource for modeling, monitoring and forecasting air–sea fluxes and growing human infrastructure needs in a changing polar environment. New demands include the characterization of uncertainties both regionally and seasonally for spaceborne, airborne, in situ and underwater measurements. To serve these growing needs, we quantify the impact of spatial aliasing by computing resolution error (Er) over a range of horizontal scales (x) from 5 to 500 m. Results are summarized through a power law (Er = bxm) with distinct exponents (m) from 0.3 to 0.5 using example mathematical functions including Gaussian, inverse linear and running mean filters. Recommendations and visualizations are provided to encourage discussion, new data acquisitions, analysis methods and metadata formats
    corecore