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ABSTRACT. During late winter 2007, coincident measurements of sea ice were collected using various
sensors at an ice camp in the Beaufort Sea, Canadian Arctic. Analysis of the archived data provides new
insight into sea-ice isostasy and its related R-factor through case studies at three scales using different
combinations of snow and ice thickness components. At the smallest scale (<1m; point scale), isostasy
is not expected, so we calculate a residual and define this asʕ (‘zjey’) to describe vertical displacement
due to deformation. From 1 to 10m length scales, we explore traditional isostasy and identify a specific
sequence of thickness calculations which minimize freeboard and elevation uncertainty. An effective
solution exists when the R-factor is allowed to vary: ranging from 2 to 12, with mean of 5.17, mode of
5.88 and skewed distribution. At regional scales, underwater, airborne and spaceborne platforms are
always missing thickness variables from either above or below sea level. For such situations, realistic
agreement is found by applying small-scale skewed ranges for the R-factor. These findings encourage a
broader isostasy solution as a function of potential energy and length scale. Overall, results add insight
to data collection strategies and metadata characteristics of different thickness products.

KEYWORDS: ice and climate, ice physics, sea ice, sea-ice dynamics, sea-ice modelling

INTRODUCTION
Sea-ice isostasy is a vertical buoyancy balance where a mass
per unit volume of sea water supports sea ice and snow.
Untersteiner (1986) and Eicken and others (2009) summar-
ize a range of instruments capable of measuring the related
thickness components of snow depth (hs), submerged snow
ice (hsi), ice freeboard (hf), surface elevation (he equal to any
snow plus ice freeboard), ice draft (hd), ice thickness (hi
equal to freeboard plus draft) and total thickness (hT equal to
everything from the top of any snow to the bottom of the
ice). All variables just described can be measured directly
with existing field instruments in one location (Fig. 1), while
underwater, airborne and spaceborne platforms must derive
missing terms through the assumption of an isostatic
balance, often by way of a so-called R-factor described by
Wadhams and others (1992). The R-factor is essentially a
ratio of thickness below (hd) and above sea level (he)
expressed as

R ¼ hd

he
¼ !T

!w " !T
: ð1Þ

Here !T denotes a bulk density for the full vertical column of
snow and ice (i.e. total thickness hT) and !w refers to the
bulk density of nearby water on which the ice is assumed to
be free-floating.

When practical, the R-factor is based on calibration and
validation from nearby field measurements. But for areas as
large as the Arctic basin or Southern Ocean, airborne and
spaceborne programs are needed to cover the area in a
short time. In Richter-Menge and Farrell (2013), thickness

estimates are not derived from an R-factor directly but
through an isostatic relationship (e.g. eqn (14) in Kurtz and
others, 2013) between sea-ice thickness, freeboard and
snow depth, with mean densities for ice, water and snow of
915% 10 kgm–3, 1024 kgm–3 and 320%100 kgm–3, respect-
ively. Uncertainty estimates for these mean values are often
taken from climatology (e.g. Warren and others, 1999).

In contrast to this large-scale approach, coincident
airborne and underwater measurements provide point-to-
point observations of draft to elevation at meter-scale
resolution (e.g. Doble and others, 2011). Such datasets are
very few in number, very expensive to collect, but
extremely valuable because they show spatial and temporal
variability ranging widely depending on the length scale of
measurements, proportions of ice types, snow composition
and underlying water masses. Differences between large-
scale approximations and small-scale observations seem, at
first, like quaint academic exercises until one realizes that
both datasets are used in global climate projections. The
large-scale datasets provide estimates of sea-ice mass-
balance changes, while the small-scale datasets provide
parameterizations for properties and processes that drive
forecasting and climate-projection models. All of these
resources influence the decisions of major human activities
and political discourse. Hence, there are many growing
reasons to resolve any disconnect between large-scale
assumptions and small-scale observations of sea-ice thick-
ness, especially relationships involving isostasy. In this
paper, we address this important topic by examining the
uncertainties of isostasy.
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We begin by identifying the three largest sources of
variability. First, snow density (!s) has a larger range than
mean climatological deviations with variability of order
100% (e.g. !s&300%300 kgm–3) based on direct measure-
ments (e.g. Sturm and others, 2006; Weeks, 2010). Second,
the difference between densities of sea water and sea ice (i.e.
!w – !i) is high. This seems an unlikely source at first since
sea-water surface density varies little (e.g. 1022%5 kgm–3 in
the SEDNA archive discussed later), <1% relative difference.
However, the compiled work on densities by Timco and
Frederking (1996) found sea-ice density (!i) between 720 and
940 kgm–3 (or <25% relative difference), with an average
value of 910 kgm–3. First-year (FY) sea ice varies from 840 to
910 kgm–3 above the waterline, and from 900 to 940 kgm–3

below the waterline. Using the rough ranges above, the
difference between highest water density and smallest ice
density reported here is roughly the same size as snow
density variability (e.g. 1027 – 720=307 kgm–3), with the
range of differences similar to snow density variability (e.g.
differences between 77 and 307 kgm–3 using example
numbers above), especially in summer when ice density
values decrease as the ice decays structurally during the
melting process (Barber, 2005; Timco and Weeks, 2010).
Additionally, densities are not normally distributed locally (e.
g. Timco and Frederking, 1996; Weeks, 2010) and hence are
difficult to parameterize with standard statistics. In short,
density values are highly variable in time and space, and not
represented well using a climatological mean with associ-
ated normally distributed variance. Furthermore, at any time
of the year, sea ice may contain voids where sea water
intrudes, especially in unconsolidated first-year deformed
(FYD) ice (i.e. newly formed ridges), with brine channels
being the small-scale voids that contain considerable sea
water at strongly varying high salinities. Hence, the intrinsic

material property of density for all three materials (snow, ice,
water) is responsible for the largest uncertainties in any
buoyancy calculations. Most importantly, there is currently
no systematic way to non-invasively measure density, with
invasive methods being time-consuming and sparse com-
pared to measurements of thickness and area.

The last issue is the validity of isostasy itself. While an
isostatic balance for ice exists at some length scale (Timco
and Frederking, 1996), that length scale is not understood,
nor do we have a way of characterizing such length scales.
Isostasy is a steady-state balance assumed to be more or less
true away from pressure ridges and actively deforming
features (e.g. Hopkins 1994). But sea-ice thickness is
sampled (e.g. Wadhams, 1981, 2000) with the largest mass
found in the ridged and deformed ice. Additionally, as soon
as ice concentrations at any length scale begin to approach
80%, a history of mechanical processes invokes lateral ice
forces which deform the ice in three dimensions (3-D)
through bending, buckling, cracking, folding, grinding,
rafting, ridging, shearing and twisting (Thorndike and others,
1975). The history of these processes is captured in ice
shapes that differentially slide over a slippery ice–water
interface below, while sticking together by freezing air
temperatures above. In this way, deformation processes work
and rework sea-ice thickness over different length scales and
re-establish isostasy after each deformation event based on
integrated lateral and vertical interlocking forces over many
length scales (i.e. potentially scale-invariant; Hopkins and
others, 2004). Therefore, there are a number of non-isostatic
processes that are non-stationary and large enough to
augment thermodynamically grown ice, of order 1–2ma–1,
into several possible non-Gaussian (i.e. skewed) thickness
distributions (e.g. Geiger and others, 2011). Long distribution
tails can easily reach and exceed ten times thermodynamic
vertical growth. As a result, processes such as sea-ice
deformation and drifting snow complicate isostatic balance
at largely unknown and time-varying length scales based on
a combination of factors not yet fully understood. Therefore,
a strategic starting point begins with a review of the
underlying principles and their associated uncertainties.

Fundamentally, the underlying premise begins with the
basic principle that ice floats. For simplicity, let us consider
arctic sea ice which is often composed of columnar ice.
Columnar ice looks like tiny hexagonal vertical columns,
with a useful surrogate in an academic setting being that of
the traditional wooden hexagon-beveled pencil. If we
imagine a bundle of unsharpened pencils of different
lengths then we can visualize holding that bundle in one
hand with all the pencils next to each other. We can use the
fingers on our other hand to push on the ends of individual
pencils. This is possible because the pencils are nearly
independent of each other. The hand holding the pencils is
applying a force which creates friction that holds the pencils
together. When we loosen our grip, we apply less force and
this makes it easier to slide each pencil along the others.
This interesting toy model lets us create different surfaces
based on the position of the top and bottom ends of the
pencils relative to each other. We can also apply one
common force to move all the pencils up or down together.
Essentially, we are working with a physical model which
satisfies Newton’s laws which explain how forces balance
and, more specifically, the case of lateral and gravitational
forces – the latter associated with Archimedes’ principle
of buoyancy.

Fig. 1. Sea-ice thickness variables and their relationships. Vertical
schematic shown with total thickness (T) comprising a composite of
cryospheric materials at the air–sea interface. Different-colored
pathways abstractly describe possible combinations. Pathways are
chosen based on instruments and processing algorithms.
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For real sea ice, there is an added complication that every
piece of ice is partly glued to its neighbors. Some ice pieces
are subject to deformation through lateral forces while
others are pushed up or down due to snow which is falling,
blowing and redistributing in large amounts on top of the ice
which is floating on sea water. In such cases, isostatic
balance does not act on a point-by-point basis because sea
ice is an integrated solid material. Instead, sea ice floats
freely on sea water with an averaged interconnected
balance which is valid over some length scale (L). Unlike
the pencil model, the isostatic balance of sea ice includes
different materials with different densities, with sea water
being the heaviest followed by sea ice, then snow. The
density is critical to the buoyancy force balance because
buoyancy acts in the vertical direction where gravity pulls
heavier materials downward, thereby allowing lighter sea
ice to float on sea water.

Through similar analogies, we begin to understand why
there is a large range of R-factors found by Doble and others
(2011) when analyzing small-scale (<1m footprint) meas-
urements collected with a multibeam sonar. At larger scales,
such as those described by Wadhams and others (1992), R-
factors are computed by matching overall probability
density functions of freeboard and draft over long distances.
The only way to currently compare results found by Doble
and others (2011) with those by Wadhams and others (1992)
is to take a mean R-factor from all the measurements
reported in Doble and others (2011). Unfortunately, the
averaging process removes much of the natural variability
needed to understand the processes and length scales
associated with isostasy (e.g. Geiger and others, 2015).

Given the complexity of the situation, we examine
isostasy in this paper from a scaling perspective. Multiple
instruments are clearly needed to create effective data-fused
products, but effective approximations are needed because
most direct measurements are invasive and disrupt the
material being measured (e.g. drilling). We begin by
expanding upon the underlying traditional mathematical
premise. We incorporate error propagation to evaluate the
full range of values rather than mean estimates. Because
many of the variables are not normally distributed, there is
much to be learned by quantifying natural variations at
different scales with different instrument combinations.
Next, we evaluate sample data from three different scales
as case studies to determine effective combinations which
minimize uncertainties given assumptions made. Finally, we
reassess current thinking and outline a new approach which
takes into account scale as well as measurement practices.

MATHEMATICAL PREMISE
Consider a mass of free-floating ice (mi) over a horizontal
area (A) with the possibility of snow cover either above sea
level (ms) or subject to flooding and refreezing below sea
level (msi). This mass is in isostatic balance with the
surrounding sea water and will displace a certain mass of
sea water (mw) through the relation mw ¼ mi þmsi þms:
When the area observed is not free-floating, there are 3-D
pressures and shearing forces from surrounding structures
(e.g. ice, land, waves or tidal surface gradients, etc.). The
vertical component of these forces (Fz) works with or against
gravity (g) to push the floating solid material up or down.
Here we define the vertical displacement due to deform-
ation from such forces as ʕ (pronounced ‘zjey’) and express

the vertical balance of sea ice and snow on sea water
through the mass per unit area mathematical relation

mw

A
¼ !whw

¼ mi þmsi þms

A
þ Fz

gA
¼ !ihi þ !sihsi þ !shs þ !Tʕ,

ð2Þ

where

!T ¼ !ihi þ !sihsi þ !shs

hT

hT ¼ hi þ hsi þ hs

Fz
gA

¼ !Tʕ:

ð3Þ

Here ! is density and h is thickness, with subscripts w, i, s, si
and T representing water, ice, snow, snow ice and total,
respectively (Fig. 1). Applying terms defined within sea-ice
literature (e.g. Eicken and others, 2009), we use sea level
(z=0) to delineate ice draft (hd) from ice freeboard (hf), with
ice thickness (hi) equal to the draft plus freeboard. For
completeness, we identify elevation (he) equal to any snow
plus freeboard. We also identify the term snow ice (subscript
si) as the flooding and freezing of snow into ice (as is often
the case for Antarctic sea ice).

For simplicity in this paper, we assume an Arctic situation
where snow ice is negligible. Subsequently, we reorganize
our balance into typical arctic thickness combinations
(Fig. 1) by substituting hd =hw and hd +hf =hi and noting
that !e is bulk density for elevation as a weighted average of
snow and freeboard ice such that

!w " !ið Þhd ¼ !ehe þ !Tʕ ¼ !ihf þ !shs þ !Tʕ: ð4Þ
Using principles of error propagation (e.g. Geiger, 2006), we
expand each term in Eqn (4) into a central-tendency value
(denoted by a bar over a variable) and an uncertainty range
(denoted with !). We take care not to restrict uncertainties
to a normal distribution by identifying a distinct lower and
upper bound for each variable, especially since both
thickness and density are known for their lack of symmetry
about a mean value. At length scales (L) where isostasy is
assumed valid, we set ʕðLÞ ¼ 0. In this way, Eqn (4)
expresses solutions in a form typically seen in the literature
(e.g. Eqn (1)) for central-tendency solutions for the R-factor
(R) plus or minus variability. Mathematically, this is
expressed as (details in Eqns (A1–A3) in Appendix)

R ¼ R%!R; R ¼ hd

he
¼ !e

!w " !i
ð5Þ

!R ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!!e
!e

" #2

þ !!w2 þ!!i2

!w " !ið Þ2

 !vuut : ð6Þ

Two related factors are similarly derived for ratios of total
thickness-to-draft and total thickness-to-elevation with the
same propagated uncertainty as Eqn (6).

RT=D ¼ hT

hd
¼ hd þ he

hd
¼ 1þ 1

R
; ð7Þ

RT=E ¼
hT

he
¼ hd þ he

he
¼ 1þ R, ð8Þ

where subscripts T/D and T/E signify total-to-draft and total-
to-elevation respectively. Unlike Eqn (5), Eqns (7) and (8) do
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not have independent numerator and denominator, but they
do provide the practical relationships often invoked for
underwater, airborne and spaceborne measurements which
use these relationships to estimate a total thickness based on
some proportion of measured draft or elevation. In
subsequent sections, we invoke different combinations of
variables using Eqns (5–8) to determine which solutions
provide the least uncertainty. Our goal with such a
formulation is to identify the most accurate pathways
(Fig. 1) to improve data collection strategies.

METHODOLOGY
We use an archive from the International Polar Year field
experiment called the Sea-ice Experiment: Dynamic Nature
of the Arctic (SEDNA; Hutchings and others, 2008, 2011).
Specific data include regional submarine upward-looking
sonar returns (Geiger and others, 2011; Wadhams and
others, 2011), electromagnetic (EM) induction sea-ice
thickness retrievals using a Geonics EM-31-MK2 (hereafter
referred to as EM-31), snow depth using a MagnaProbe

(Sturm and others, 2006), snow density measurements and
drilled holes (Figs 2 and 3).

Data processing
The camp layout (Fig. 3) provides a reference of ice
structures for (1) drillhole validation sites at the point scale,
(2) EM thickness profiles at intermediate scale with 5m
spacing over 6 km long spokes, and (3) submarine upward-
looking sonar profiles (Fig. 2) spanning the regional scale.
Submarine sonar measurements were bound within a survey
box of length 20 km (2(104m) on each side (Fig. 2b) and
include five passes through the camp survey area including
one pass beneath line 7 (Fig. 3a). All three datasets were
collected within 2 weeks of each other. Data collected and
analyzed during the ice camp from 3 to 7 April are
considered coincident measurements because the thickness
array did not deform noticeably during that 4 day window
based on direct and airborne observations. The submarine
data, however, were collected 2 weeks prior to the field
camp. The time frame from end of March to beginning of
April is too short to be noticeably different in terms of
thermodynamic growth or melt, but certainly different at
point-by-point locations due to deformation processes. It is
for this reason that a statistical approach is used to relate
submarine results to ice camp measurements with these two
datasets considered quasi-coincident.

Data-processing methods are provided below, with each
measured value reported with its uncertainty which is
propagated into subsequent calculations. Density values are
known explicitly for a few points for snow but inferred from
the ranges cited in the introduction otherwise. Ice density is

Fig. 2. Submarine survey. (a) Geographic region with RADARSAT-1
image centered on ice camp on 18 March 2007. Multi-year ice
depicted by whiter pixels, first-year ice by darker pixels. Ice cover is
nearly 100% concentration with very narrow leads of open water
which refreeze quickly. Red box identifies the study area shown in
(b). (b) Submarine tracks superimposed on small section of
RADARSAT-1 image from (a). Hours of the day on 18 March
2007 (in UTC) segmented (by color) for the submarine track.
Arrows bear true north.

Fig. 3.Arctic ice camp survey. (a) Lines superimposed on photograph
taken from light-wing aircraft at oblique angle over 1000m long legs.
Conditions during the thickness survey from 1 to 7 April 2007 are
well represented, with no open water along any leg. Arrow bearing
true north. (b) Camp layout with 8 ft (2.44m) tall plywood huts for
scale reference. (Photograph by Bruce Elder, CRREL.)
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only inferred from cited ranges, while water density
(1022%5 kgm–3) is based on the range of time-varying
conductivity–temperature–depth (CTD) measurements col-
lected at the camp at 6 hourly intervals in vertical profiles
which rested at the surface before profiling the mixed layer
to a maximum depth of 120m (Hutchings and others, 2011;
specific data portal http://research.iarc.uaf.edu/SEDNA/
dataport/CTD_Wilk/). Subsequently, we track the propa-
gation of measurement uncertainty to test, for example,
whether a term is normally distributed and the impact of
range on calculations.

Point-scale isostasy testing
The goal at this scale is to test sensitivity of different
combinations of thickness measurements to natural vari-
ability. Using a 0.10m diameter drill, holes were made at
various locations along the six survey lines (Fig. 3a) with
properties of snow depth, ice thickness and ice freeboard
measured to centimeter vertical accuracy (i.e. %0.005m). In
this way, we have sufficient measurements to calculate R-
factors directly using Eqns (5–8) with no need to introduce
highly variable density terms and compare these to density-
derived solutions. Since snow has a highly variable density,
we include bulk snow density samples collected with a
snow tube every 100m along the survey lines with
accuracies to %0.005m for thickness and weights to
%0.001 kg. At every 500m, snow pits were dug with square
samplers (32.4 and 97.2( 10–6m3 for small and large
samplers, respectively) taken in individual layers and then
integrated for a bulk density to compare with vertical tube
measurements. For ice density, we estimate 900%40 kgm–3

and use the SEDNA archived water density values of
1022%5 kgm–3. With these values, we compute the
residual away from isostasy by solving Eqn (4) as follows:

ʕ L ¼ 0ð Þ ¼ !w " !ið Þhd " !ihf " !shs

!T
ð9Þ

with propagated uncertainty detailed in Eqns (A4–A7) in the
Appendix.

EM thickness profiles
To increase data rate and scale, >1000 thickness values
were collected. Two people walking in tandem with a
MagnaProbe and EM-31 recorded snow depth and total
thickness, respectively, at sampling intervals every 5m
along survey lines (Fig. 3a). During this transect survey, the
EM-31 was carried like a tightrope walker’s balancing pole
(i.e. perpendicular to the transect path) using a neck strap
attached to the central data logger to maintain a steady
height (z0 = 1.00%0.05m) with the transmitter and receiver
coils orientated in the vertical dipole mode. This device has
measured sea-ice thickness for many years, with thickness
sensitivities detailed, for example, by Kovacs (1975) and
McNeill (1980). Side-by-side boot prints marked an EM-31
reading. The person carrying the MagnaProbe followed
behind and placed the induction rod of the MagnaProbe
into the snow in front of the boot markings on fresh snow.
The MagnaProbe’s inductive unit was calibrated before each
data collection segment by positioning the inductive coil at
two known positions along the induction rod. Values were
entered into the data logger to co-register an induction value
with a distance along the MagnaProbe’s induction rod as in
Sturm and others (2006).

Following the survey, EM-31 samples were taken at
calibration sites where drilled holes were made. The drilled
holes included snow depth (with MagnaProbe) and ice
thickness (with hand drill) both to centimeter accuracy (i.e.
%0.005m). At some calibration locations, the EM-31 was
held at two different heights (carrying height around 1m and
ground) to include beamwidth effects and orientation
relative to local ice features. Subsequent data processing is
done in two steps: (1) resolve thickness; and (2) identify
isostatic components. First, the EM-31 requires calibration
for which we choose an empirical exponential fit between a
recorded apparent conductivity "a (mSm–1) and distance z.
The distance z is between the instrument and a conductive
material (sea water assumed in this study). The conversion
equation used here follows Eicken and others (2001) as

"a ¼ Aþ B exp ð"CzÞ: ð10Þ

Here coefficients A, B and C are found using nonlinear
regression (e.g. Press and others, 2007). Nonlinear regres-
sion routines require input of a function, Eqn (10), a
sequence of measured values for apparent conductivity
and distance z, and an initial guess of coefficients, for which
we use coefficients in Eicken and others (2001). Once
coefficients are found, the inverse solution

z ¼ zref " ln ð"a " AÞ=C; zref ¼ ln ðBÞ=C ð11Þ
provides distance z between instrument and water surface at
any site given known coefficients and input apparent
conductivity values. Sea-ice thickness zi is determined
subsequently by

zi ¼ z" z0 " zs: ð12Þ
Here z0 is the distance between the instrument and the top
surface (a mixture of snow and ice) while zs is the snow
thickness from the MagnaProbe used in this study.

An exponential fit is increasingly sensitive with depth, but
nonlinear regression analysis provides tight confidence
intervals on mean slope and intercept values given any
reasonable number of samples. Hence, we choose to perturb
our calibration dataset into three sample sizes to estimate
sensitivity beyond our drillhole capability. The first sampling
includes all available pairings of drillhole data with EM-31
relative conductivity readings from which we compute a
central-tendency set of coefficients (Table 1) and a fitted
exponential curve. Next, we subsample the calibration data
set into values which are below and above the central-
tendency fit. Each of these two subsets is subsequently
subject to nonlinear regression to generate two unique sets of

Table 1. Summary of EM calibration coefficients

Solution Coefficient

A B C

mSm–1 mSm–1 m–1

Initial guess* 54.70 1178.41 0.8720
Low† 9.90% 5.82 927.80% 9.42 0.6943%0.0158
Central value 26.48% 4.48 1049.40% 6.24 0.7624%0.0120
High 67.13% 2.63 1107.19% 3.38 0.8649%0.0081

*Eicken and others (2001) values for which confidence interval not
provided.
† Confidence interval at 95% level provided through nonlinear regression
analysis.
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coefficients which we call the low and high solutions
(Table 1). This approach provides a very tight set of fitted
curves where data values span the exponential fit (Fig. 5a,
further below), but with a growing uncertainty beyond the
data-availability range. Resulting thickness values are con-
catenated together to form a single thickness profile.

Isostasy calculations for these data are computed using a
coupled set of equations to render the unmeasured terms of
draft, freeboard, and elevation thickness (Fig. 1). Since there
are insufficient known variables to test isostasy, we need to
introduce an assumption. Counter to the point-scale tests
earlier, we take the opposite, and currently traditional,
approach, which hypothesizes that an EM footprint is of
sufficient size L such that ʕðLÞ ¼ 0. In other words, we
assume that isostatic balance exists at a scale around 5m
which is the length scale of the sampling intervals based on
the coil separation distance of the EM-31. We track the
uncertainties to identify the solution pathways which render
the smallest uncertainties starting from Eqn (9) and input
directly measured snow and total thickness values:

hd ¼ !ihT " !i " !sð Þhs

!w

hf ¼ hT " ðhd þ hsÞ
he ¼ hf þ hs:

ð13Þ

Such a solution is often the only practical option available,
so we test this scenario to address best practices when
invoking this approximation knowing that non-isostatic
conditions are probably present but so are other complica-
tions which we show and discuss later.

Submarine upward-looking sonar profiles
Around 2( 105m (200 km) of sea-ice draft measurements
were gathered by the Royal Navy submarine HMS Tireless in
the vicinity of the ice camp on 18 March 2007 (Fig. 2).
Processing was completed following Geiger and others
(2011), Wadhams and others (2011) and Wadhams (2012).
Mean ice draft values were subsequently added to the
SEDNA archive (Hutchings and others, 2011), with biases
reported primarily from the sonar’s variable footprint due to
the 3° beamwidth. For simplicity here, we use the reported
submarine draft ‘as is’ to explore the variability of elevation
values that may result given R-factor estimates derived from
ice camp survey estimates of isostasy. In this way, we test
the impact of propagated uncertainties when creating
combined data products. As such, the submarine archive
serves as an applied case study for consistency between
scales within the region (Fig. 2). Similar statistical tests can
be repeated with respect to satellite and airborne remote-
sensing data and numerical models.

The relevant conversions are as follows. First, we
construct thickness distributions of total thickness and draft
for ice camp in situ measurements. We identify the mode of
the distributions of total thickness and draft, and subse-
quently construct a ratio between these modes to compute
the total-to-draft R-factor following Eqn (7). We apply the
computed R-factor to the submarine draft to estimate a total
thickness and elevation for submarine results. We call this
approach the ‘thermodynamic-mode solution’ as in Geiger
and others (2011). This solution is preferred because the
primary mode during the SEDNA experiment corresponds to
first-year level ice and its accumulated snow cover.
Thermodynamically grown ice can be approximated with a

degree-day algorithm, and precipitation on level ice is far
less variable than on deformed ice types. These two factors
support a statistical solution with low uncertainties relative to
most approximations currently used. Later on, we compare
this thermodynamic solution to low, central-tendency and
high R-factor solutions based on slopes derived from isostasy
solutions from drillhole data using the relation

he ¼
hd

R
; hT ¼ hd þ he: ð14Þ

The submarine case study examines elevation solutions for
two reasons. First, draft is the larger value such that variations
in elevation are expected to be small in comparison to
airborne and spaceborne retrievals where elevation errors
will propagate to larger draft errors. Second, we can directly
compare the elevation from submarine thickness retrievals in
the area of the ice camp and ascertain regional consistency.
We do this by comparing the elevation results of the entire
area traversed by the submarine with the portions which
passed through the area surveyed during the ice camp.
Similar comparisons already provide strong agreement for
draft and total thickness of this same dataset (Geiger and
others, 2011).

RESULTS
Measured snow density values vary the most within snow-pit
layers, with depth-hoar values at the ice–snow interface as
low as 37 kgm–3 and hard wind-blown surface densities as
large as 647 kgm–3. Bulk snow measurements and integrated
snow-pit density distribute with a Gaussian shape about a
mean value of 290%22 kgm–3 (Fig. 4a). Drillhole measure-
ments are not in isostatic equilibrium (Fig. 4b), with residuals
pushed upward above neutral in all but one case where
freeboard is significantly suppressed. The results reported
here are only one prototype case study with 50 points, but
the residual test demonstrates the ability to test isostasy from
in situ measurements. Intuitively, non-isostatic balance
makes sense at the point scale, but we need to consider
what this means relative to instruments at larger scales.
Hence, we estimate R-factors from different components
from drilled holes (Fig. 4c–f) to demonstrate how variable
uncertainties are depending on the choice of pathways
(Fig. 1). Overall, relationships which avoid elevation (e.g.
total thickness to draft; Fig. 4e) differ statistically from those
which include elevation measurements. Density variations
strongly contribute to these differences because of snow
density variability (Fig. 4d). The absence of isostatic balance
at the point scale also contributes. These results support the
need to rethink drillhole sampling strategies, especially when
combined with new evolving technologies such as autono-
mous underwater vehicles.

As with drillhole results, we find broad ranges of possible
R-factor solutions for the 5m sampled EM-31 and Magna-
Probe measurements (Fig. 5b), with solutions spanning a
similar range for individual calculations of draft/elevation
(Fig. 5d). Only when we derive individual R-factors using
the sequence in Eqn (13) do we obtain realistic freeboard
thickness estimates (Fig. 5c). There is no case where realistic
freeboard results from a single R-factor value (not shown).
For direct comparison with potential airborne and under-
water observations, we produced one concatenated profile
(Fig. 6a) for which we resolved elevation and ice draft
(Fig. 6b) using Eqn (13). Intuitively realistic freeboard is
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provided with results showing an area where suppressed
freeboard exists when thick snow is present over thinner ice
(near 2 km mark; Fig. 6). No other solutions attempted in this
study could render a freeboard so close to assumed arctic
freeboard levels. Eqn (13) is an effective ‘best practice’
sequence for ground surveys which need to make compar-
isons to airborne, spaceborne and underwater coincident
measurements, and therefore a great addition to the earlier-
described workflow schematic (Fig. 1).

For clarity, we note that even with this solution,
uncertainties remain high for three reasons: (1) natural
variability, (2) presence of non-isostatic contributions, and
(3) need for better data-collection techniques, especially for
sea-ice density. The clearest case for these uncertainties is
seen near the 2 km mark in Figure 6. This location
corresponds to the 915m mark of leg 5. Along that transect
from 850m to the end of the line (last 150m of the profile),
field notes report ‘first year, very light rubble’. Transect
samples report snow depth along that 150m section ranging
from 0.50 to 0.60m with EM-31 ice thickness values ranging
from 1.35 to 1.45m for a total thickness from 1.75 to
2.05m. During calibration, the specific spot chosen for a
drillhole reports 0.08m of snow and 1.81m of ice,
composed of 0.15m of freeboard and 1.66m of draft, for
a total thickness of 1.89m. Such findings support more
small-scale studies to understand snow and ice thickness
distribution of deformed ice.

Ground survey R-factor ranges are used to bound
estimates of total thickness for the regional submarine survey
with realistic uncertainties shown (Fig. 7). Unknown snow

thickness for each elevation calculation clearly contributes
to high uncertainties. In particular, we see (Fig. 8a) that
uncertainties due to EM calibration yield different volume
estimates because of poor resolution of thickest ice types.
This is known for EM instruments but communication of this
fact as metadata in data archives is lacking and needs to be
included. Uncertainties at the 95% confidence level for EM
calibration coefficients only bound the accuracy of the
mean, but this does nothing to bound uncertainty for thick
ice types. The pseudo-Monte Carlo approach used in this
study (Fig. 4) provides one possible method to quantify
uncertainties due to data-collection practices.

Thickness distributions for the in situ survey array, the
quasi-coincident submarine survey beneath the survey
array, and the larger regional submarine survey (Fig. 8b)
are in good agreement for shape and mode of elevation
distribution estimates. The high variability in submarine
estimates for the thinnest ice agrees with earlier reports
describing thin-ice errors in the Tireless expedition logs due
to open-water detection issues, with such matters typically
quoted with a bias of 0.36m over 5(104m (50 km) length
scales (Wadhams and others, 2011). What is happening is
reported in more detail in Geiger and others (2015) as due to
beamwidth or resolution error. We see the visual impact of
such bias graphically (Fig. 8b) in the large shaded
uncertainties of both thin-ice elevation distributions and
cumulative elevation distributions for the full submarine
survey area and subset survey beneath the ice camp. For
completeness, the integrated submarine elevation estimate
is 0.44m with an uncertainty range of 0.39m that is biased

Fig. 4. Isostasy and R-factor values from point measurements. (a) Snow density as the most variable measurement. (b) The residual from
traditional isostasy calculations. (c–f) R-factor values from different parameter choices with associated uncertainties. (d) Two uncertainty
ranges: dark grey shading based on mean densities while light grey includes density uncertainty ranges described in the Introduction.
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thicker than the integrated value. As a comparison, the
ground survey estimate is 0.41m for integrated elevation,
with an uncertainty range of 0.17m also biased thicker than
its integrated value. Much of the bias is due to uncertainties
related to snow depth and density, which are proportionally
larger for thinner ice. Inclusion of uncertainties in frequency
distribution plots (e.g. Fig. 8) informs subsequent data users
about the variability of uncertainties, especially as a
function of ice thickness and type.

R-factor variability found in the EM thickness profile is
based on an assumption of isostasy. In frequency space,
such a report is communicated by showing how the R-factor
is neither normally distributed (Fig. 8c) nor is it narrowly
ranging. The uncertainties in this distribution are quite small
(narrow grey shading) relative to distribution variability, so
the skewness of the R-factor distribution is significant at the
scales studied here. For clear communication to intended
data users, we provide statistics including mean, mode,
distribution and uncertainties so that modelers and other
stakeholders have a quantitative assessment of the R-factor
in a form that they can test further.

DISCUSSION
There are three ways to explain the large variability in R-
factors found in this study. One is that isostasy above some
length scale is true for multiple R-factors in close physical

proximity to each other in corroboration with findings by
Doble and others (2011). A second possibility is that there is
one central-tendency R-factor at some integrated length
scale but isostasy is not true locally (only in an integrated
sense), or quasi-equilibrium near isostasy is true with
deformation events continually perturbing equilibrium to a
length scale that is time-varying. A third possibility is, of
course, some combination of both, with transitions across
length scales for an effective R-factor for areas of common
roughness. Regardless of the possibilities, one fundamental
question remains: What is the length scale of isostasy and
how do wemake field measurements to test such a principle?

Working backwards, we consider a modeler’s need as an
end user. Model parameterizations for thickness typically
involve statistical distributions and the redistribution func-
tion " from Thorndike and others (1975). Details of the
forces responsible for thickness redistribution are formulated
explicitly through changes in potential energy as a measure
of the work done to change the vertical position of ice
floating on water as in eqn (10) of Hopkins (1994). Here, we
reproduce a simplified version of that equation, indexing
over a number of N contiguous pieces of ice such that

!PE ¼ g
XN

n¼1
vn!t½ *!nAn " vns!t½ *!wAnsð Þ ð15Þ

Here !PE is change in potential energy, g is gravity, !t is a
suitable time interval for the vertical motion of ice blocks,

Fig. 5. Resolving MagnaProbe and EM-31 measurements into isostatic estimates. (a) EM-31 calibration results relative to coincident drillhole
values for different ice types of first-year (FY) ice, FY deformed (FYD) and multi-year (MY) ice. (b) Summary of ranges of R-factors from
drillhole results to estimate water levels. (c, d) Best outcomes for R-factor using coupled set of isostatic relations in Eqn (13) with a large but
realistic uncertainty based on natural variability largely from density uncertainty. Note that the individual isostatic solutions are as varied as
all the possible drillhole approaches summarized in (b). Uncertainties shown with grey shading throughout at either the 95% confidence for
computed values or as propagated ranges from input values. Uncertainties not shown in (c) because they range enormously and
asymmetrically from <0.1m to >1m.
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and vn and vns are vertical velocities of a specific ice block
indexed by n with subscript s being the center of mass of the
portion of the block that is submerged; the same goes for
lateral area of the block (An) and lateral area of the portion of
the ice that is submerged (Ans). Most importantly, terms in
square brackets resolve to vertical displacements in a
manner similar to ʕ. Hence, the form in Eqn (15) provides
a framework to describe changes in potential energy due to
departure from an isostatic balance. We formulate a
potential energy change relative to N discrete locations,
each with its own vertical displacement ʕn within a total
area AT ¼

PN
n¼1 An such that

!PE ¼ g
XN

n¼1
ʕn!nAn ð16Þ

with !n as a bulk density for each discrete location,
essentially !T at each point n as in Eqn (2). From such a
relationship, one can compute !PE from three consider-
ations. First, an area is in isostatic balance if !PE =0 (or
nearly so when !PE& 0). Second, over an increasing range
of length scales (each spanning increasing surface areas),
we can test the condition !PE (L+Critical Length Scale)
&0 to see if there is a critical threshold for isostatic
balance. Finally, and probably most important, Eqn (16)
can be tested with in situ measurements. Such a field
experiment is no doubt time-consuming and new sampling

strategies are needed but ʕ and !PE at least provide a
practical starting point for framing new field experiments to
test and evaluate isostasy.

In the meantime, reporting of field measurements with
uncertainties for thickness distribution improves commu-
nication between point measurements and swath data for
large-scale users. Such communication is essential to the
integration of measurements of sea-ice thickness and should
be reported with individual uncertainties for each measure-
ment at specific length scales (i.e. zðLÞ ¼ z%!z). To
support such measurements, systematic uncertainty report-
ing is needed especially for field campaigns with coincident
ground stations, airborne and underwater surveys. Such
reporting provides more accurate and comprehensive
understanding of sea-ice changes for ongoing climate
transition issues such as rapid reduction of sea ice from
winter to summer months, impacts on polar atmospheric
moisture, and larger connections to atmospheric circulation
and mid-latitude weather variations.

CONCLUSION
This paper has used case studies to look carefully at scaling
issues for isostasy as a means to advance combinations of
data products. Traditional sea-ice buoyancy assumes a
one-dimensional isostatic balance between vertical layers

Fig. 6. Snow and ice thickness from small-footprint instruments. Six survey lines (Fig. 3) concatenated together in (a) showing snow (above
zero) and ice thickness (below zero) with survey lines sampled at 5m intervals using MagnaProbe and EM-31, respectively. Field records of
ice type marked as first-year (FY), FY deformed (FYD) and multi-year (MY) ice. Vertical lines of bright blue and tan distinguish snow (using
MagnaProbe) and ice thickness (using drills), respectively, at calibration points along profiles (additional calibration points taken elsewhere).
Ice thickness lines in black are mean results, with grey shading denoting uncertainties from calibration. (b) Results as in Eqn (13) with
freeboard (red), elevation (dark grey), mean draft (black) and draft uncertainty (light grey) all computed relative to sea level (z=0m). Survey
line 7 not shown because most thicknesses were beyond the depth of EM-31 capabilities (i.e. >10m).
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Fig. 7. Elevation estimates for submarine survey. (a) A window of possible elevation values using low, medium and high slope values to
bound elevation range based on R-factors applied to submarine sonar draft measurements collected within the in situ survey array (Fig. 3).
(b) Similar results for the larger domain (Fig. 2) with elevation range and uncertainty shown.

Fig. 8. Representative distributions and their associated uncertainty. (a) The frequency distribution (FD) of total thickness for in situ
measurements and their uncertainty (grey shading) based on calibration ranges. The impact of thickness distribution on volume is estimated
by summing up the thickness distributions as a cumulative frequency distribution (CFD). Distributions shown within 51 bins at 0.2m
intervals with white noise level for reference. (b) Compilation of ice elevation distributions for in situ measurements (thick line), submarine
sonar data within the 2 km survey area (dashed), and larger regional 20 km ( 20 km box (three dash-dot) as a comparison across scales.
Maximum and minimum uncertainty provided as a merged estimate of variability from all products (shaded area). (c) The uncertainty and
variability of the R-factor from in situ measurements at 5m sampling scale, which is neither constant nor normally distributed in agreement
with the 1m scale study of Doble and others (2011).
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of water, ice and snow. Findings here show that this
assumption should be extended to include lateral forces
resulting from deformation, with this study framing the
mathematics to begin exploring this topic and support
more research. In particular, we recommend the develop-
ment of new best practices in field measurements which
support process model experiments involving ʕ and
changes in potential energy. Process models are needed
to characterize isostatic length scales in conjunction with
traditional thickness distribution and the redistribution
function (so-called Thorndike " parameter). Strong vari-
ability in bulk densities of different cryospheric materials
and large variations in snow depth strongly contribute to an
R-factor that is not normally distributed nor necessarily in
isostatic balance locally. We therefore encourage the
development of generalized buoyancy models to study
perturbations from isostasy as a function of dynamics and
time-varying length scales.

In summary, small-scale point measurements (<1m)
provide invaluable information about the distribution of
sea-ice buoyancy from a 3-D perspective. At scales from
1 to 10m, the steps outlined in Eqn (13) provide good
approximations for freeboard elevation by determining
unknowns with low uncertainties. Likewise for large-scale
underwater vehicles, a good estimate of thermodynamic
thickness provides a low uncertainty estimate for elevation
in the absence of snow thickness information. Airborne and
spaceborne solutions benefit from similar approaches as
snow-penetrating radars improve and snow-blowing process
models over rough ice are advanced. But in the end, the
most effective advancements will come from small-scale
(0.1–100m) buoyancy-mapping techniques which provide
greater insight into the spatial distribution of the intrinsic
property of density. This is an ambitious challenge, but the
data clearly indicate that such an approach is warranted if
we are to reduce the uncertainties.
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APPENDIX: ERROR PROPAGATION
Error propagation is based on absolute and relative error
expressions following Geiger (2006) and Giles and others
(2008) using the form

R ¼ R%!R ¼ hd

he
; R ¼ hd

he
;

!R
R

" #2

¼ !hd

hd

" #2

þ !he

he

" #2

:

ðA1Þ
If density properties are normally distributed (which we
cannot yet test with these data) then we have
!w " !i ¼ !w " !ið Þ and thereby derive

R ¼ R%!R ¼ !e
!w " !i

; R ¼ !e
!w " !i

ðA2Þ

!R
R

" #2

¼ !!e
!e

" #2

þ !!w2 þ!!i2

!w " !ið Þ2

 !

: ðA3Þ

For more expansive error propagation relationships, such as

ʕ ¼ !w " !ið Þhd " !ihf " !shs

!T
, ðA4Þ

we invoke substitution of variables such as

ʕ ¼ ʕ%!ʕ ¼ Ahd þ Bhf þ Chs

A ¼ !w " !i
!T

; B ¼ " !i
!T

; C ¼ " !s
!T

A ¼ !w " !i
!T

; B ¼ " !i
!T

; C ¼ " !s
!T

ðA5Þ

The respective relative error relations are

!A
A

" #2

¼ !!w
!w

" #2

þ !!T
!T

" #2
" #

!w
!T

" #2

þ !!i
!i

" #2

þ !!T
!T

" #2
" #

!i
!T

" #2

!B
B

" #2

¼ !!i
!i

" #2

þ !!T
!T

" #2

!C
C

" #2

¼ !!s
!s

" #2

þ !!T
!T

" #2

ðA6Þ

through which the full error propagation resolves clearly to

!ʕ2 ¼ ! Ahdð Þ½ *2 þ ! Bhfð Þ½ *2 þ ! Chsð Þ½ *2

¼ Ahd

$ %2 !A
A

" #2

þ !hd

hd

" #2
" #

þ Bhf

$ %2 !B
B

" #2

þ !hf

hf

" #2
" #

Chs

$ %2 !C
C

" #2

þ !hs

hs

" #2
" #

¼ Ahd
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!!w
!w
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þ !!T

!T

$ %2
& '

!w
!T

$ %2

þ !!i
!i

$ %2
þ !!T

!T

$ %2
& '

!i
!T

$ %2

þ !hd
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$ %2
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>>>>>>><

>>>>>>>:

9
>>>>>>>=
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þ Bhf

$ %2 !!i
!i
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!T
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" #2
" #

þ Chs

$ %2 !!s
!s
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