36,314 research outputs found
A simple model of price formation
A simple Ising spin model which can describe the mechanism of price formation
in financial markets is proposed. In contrast to other agent-based models, the
influence does not flow inward from the surrounding neighbors to the center
site, but spreads outward from the center to the neighbors. The model thus
describes the spread of opinions among traders. It is shown via standard Monte
Carlo simulations that very simple rules lead to dynamics that duplicate those
of asset prices.Comment: Version 2: 4 pages, 4 figures; added more stringent statistical
analysis; to appear in Int. J. Modern Physics C, Vol. 13, No. 1 (2002
Gravitational waves from three-dimensional core-collapse supernova models: The impact of moderate progenitor rotation
We present predictions for the gravitational-wave (GW) emission of
three-dimensional supernova (SN) simulations performed for a 15 solar-mass
progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor
neutrino transport. The progenitor adopted from stellar evolution calculations
including magnetic fields had a fairly low specific angular momentum (j_Fe <~
10^{15} cm^2/s) in the iron core (central angular velocity ~0.2 rad/s), which
we compared to simulations without rotation and with artificially enhanced
rotation (j_Fe <~ 2*10^{16} cm^2/s; central angular velocity ~0.5 rad/s). Our
results confirm that the time-domain GW signals of SNe are stochastic, but
possess deterministic components with characteristic patterns at low
frequencies (<~200 Hz), caused by mass motions due to the standing accretion
shock instability (SASI), and at high frequencies, associated with gravity-mode
oscillations in the surface layer of the proto-neutron star (PNS). Non-radial
mass motions in the post-shock layer as well as PNS convection are important
triggers of GW emission, whose amplitude scales with the power of the
hydrodynamic flows. There is no monotonic increase of the GW amplitude with
rotation, but a clear correlation with the strength of SASI activity. Our
slowly rotating model is a fainter GW emitter than the non-rotating model
because of weaker SASI activity and damped convection in the post-shock layer
and PNS. In contrast, the faster rotating model exhibits a powerful SASI spiral
mode during its transition to explosion, producing the highest GW amplitudes
with a distinctive drift of the low-frequency emission peak from ~80-100 Hz to
~40-50 Hz. This migration signifies shock expansion, whereas non-exploding
models are discriminated by the opposite trend.Comment: Added new figure, figure 9. Updated figure 9, now figure 10. Modified
the discussion of the proto-neutron star convection. Added a figure showing
the average rotation rate as a function of radius. Added a section discussing
where the low-frequency gravitational waves are generated, this information
is visualized in figure 9. We also made some minor changes to the text and
selected plot
Stability of ferromagnetism in the Hubbard model on the kagom\'e lattice
The Hubbard model on the kagom\'e lattice has highly degenerate ground states
(the flat lowest band) in the corresponding single-electron problem and
exhibits the so-called flat-band ferromagnetism in the many-electron ground
states as was found by Mielke. Here we study the model obtained by adding extra
hopping terms to the above model. The lowest single-electron band becomes
dispersive, and there is no band gap between the lowest band and the other
band. We prove that, at half-filling of the lowest band, the ground states of
this perturbed model remain saturated ferromagnetic if the lowest band is
nearly flat.Comment: 4 pages, 1 figur
Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 one-dimensional neutrino-driven explosion
A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to
originate from the low-mass end of progenitors with . However, degeneracy effects make stellar evolution modelling of
such stars challenging, and few predictions for their supernova light curves
and spectra have been presented. Here we calculate synthetic nebular spectra of
a 9 Fe CCSN model exploded with the neutrino mechanism. The model
predicts emission lines with FWHM1000 km/s, including signatures from
each deep layer in the metal core. We compare this model to observations of the
three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs,
and SN 2008bk. The prediction of both line profiles and luminosities are in
good agreement with SN 1997D and SN 2008bk. The close fit of a model with no
tuning parameters provides strong evidence for an association of these objects
with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the
observational coverage ended before key diagnostic lines from the core had
emerged. We perform a parameterised study of the amount of explosively made
stable nickel, and find that none of these three SNe show the high
Ni/Ni ratio predicted by current models of electron capture SNe
(ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O
and He shell material, these SNe rather originate from Fe core progenitors. We
argue that the outcome of self-consistent explosion simulations of low-mass
stars, which gives fits to many key observables, strongly suggests that the
class of subluminous Type IIP SNe is the observational counterpart of the
lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment
Renormalization of heavy-light currents in moving NRQCD
Heavy-light decays such as , and can be used to constrain the parameters of the Standard
Model and in indirect searches for new physics. While the precision of
experimental results has improved over the last years this has still to be
matched by equally precise theoretical predictions. The calculation of
heavy-light form factors is currently carried out in lattice QCD. Due to its
small Compton wavelength we discretize the heavy quark in an effective
non-relativistic theory. By formulating the theory in a moving frame of
reference discretization errors in the final state are reduced at large recoil.
Over the last years the formalism has been improved and tested extensively.
Systematic uncertainties are reduced by renormalizing the m(oving)NRQCD action
and heavy-light decay operators. The theory differs from QCD only for large
loop momenta at the order of the lattice cutoff and the calculation can be
carried out in perturbation theory as an expansion in the strong coupling
constant. In this paper we calculate the one loop corrections to the
heavy-light vector and tensor operator. Due to the complexity of the action the
generation of lattice Feynman rules is automated and loop integrals are solved
by the adaptive Monte Carlo integrator VEGAS. We discuss the infrared and
ultraviolet divergences in the loop integrals both in the continuum and on the
lattice. The light quarks are discretized in the ASQTad and highly improved
staggered quark (HISQ) action; the formalism is easily extended to other quark
actions.Comment: 24 pages, 11 figures. Published in Phys. Rev. D. Corrected a typo in
eqn. (51
Faraday waves on a viscoelastic liquid
We investigate Faraday waves on a viscoelastic liquid. Onset measurements and
a nonlinear phase diagram for the selected patterns are presented. By virtue of
the elasticity of the material a surface resonance synchronous to the external
drive competes with the usual subharmonic Faraday instability. Close to the
bicriticality the nonlinear wave interaction gives rise to a variety of novel
surface states: Localised patches of hexagons, hexagonal superlattices,
coexistence of hexagons and lines. Theoretical stability calculations and
qualitative resonance arguments support the experimental observations.Comment: 4 pages, 4figure
Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems
Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems
Subthreshold antiproton production in proton-carbon reactions
Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-)
production in proton-nucleus reactions are described at projectile energies
between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus
reaction as an incoherent sum over collisions of the projectile with a varying
number of target nucleons. It samples complete events and allows thus for the
simultaneous consideration of all particle species measured. The overall
reproduction of the data is quite satisfactory. It is shown that the
contributions from the interaction of the projectile with groups of several
target nucleons are decisive for the description of subthreshold production.
Since the collective features of subthreshold production become especially
significant far below the threshold, the results are extrapolated down to COSY
energies. It is concluded that an antiproton measurement at ANKE-COSY should be
feasible, if the high background of other particles can be efficiently
suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2:
Modification of text due to demands of referee
Purification and analytical characterization of an anti- CD4 monoclonal antibody for human therapy
A purification process for the monclonal anti-CD4 antibody MAX.16H5 was developed on an analytical scale using (NH&SO,
precipitation, anion-exchange chromatography on MonoQ or Q-Sepharose, hydrophobic interaction chromatography on phenyl-
Sepharose and gel filtration chromatography on Superdex 200. The purification schedule was scaled up and gram amounts of
MAX.16H5 were produced on corresponding BioPilot columns. Studies of the identity, purity and possible contamination by a
broad range of methods showed that the product was highly purified and free from contaminants such as mouse DNA, viruses,
pyrogens and irritants. Overall, the analytical data confirm that the monoclonal antibody MAX.16H5 prepared by this protocol is
suitable for human therapy
- …