267 research outputs found

    Non-Equilibrium Dynamics of Correlated Electron Transfer in Molecular Chains

    Full text link
    The relaxation dynamics of correlated electron transport (ET) along molecular chains is studied based on a substantially improved numerically exact path integral Monte Carlo (PIMC) approach. As archetypical model we consider a Hubbard chain containing two interacting electrons coupled to a bosonic bath. For this generalization of the ubiquitous spin-boson model, the intricate interdependence of correlations and dissipation leads to non-Boltzmann thermal equilibrium distributions for many-body states. By mapping the multi-particle dynamics onto an isomorphic single particle motion this phenomenon is shown to be sensitive to the particle statistics and due to its robustness allows for new control schemes in designed quantum aggregates.Comment: 5 pages, 4 figure

    Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data

    Full text link
    We analyze the spectral function of the single-impurity two-terminal Anderson model at finite voltage using the recently developed diagrammatic quantum Monte Carlo technique as well as perturbation theory. In the (particle-hole-)symmetric case we find an excellent agreement of the numerical data with the perturbative results of second order up to interaction strengths U/Γ≈2U/\Gamma \approx 2, where Γ\Gamma is the transparency of the impurity-electrode interface. The analytical results are obtained in form of the nonequilibrium self-energy for which we present explicit formulas in the closed form at arbitrary bias voltage. We observe an increase of the spectral density around zero energy brought about by the Kondo effect. Our analysis suggests that a finite applied voltage VV acts as an effective temperature of the system. We conclude that at voltages significantly larger than the equilibrium Kondo temperature there is a complete suppression of the Kondo effect and no resonance splitting can be observed. We confirm this scenario by comparison of the numerical data with the perturbative results.Comment: 8 pages, 6 figure

    Nonequilibrium many-body dynamics along a dissipative Hubbard chain: Symmetries and Quantum Monte Carlo simulations

    Full text link
    The nonequilibrium dynamics of correlated charge transfer along a one-dimensional chain in presence of a phonon environment is investigated within a dissipative Hubbard model. For this generalization of the ubiquitous spin-boson model the crucial role of symmetries is analysed in detail and corresponding invariant subspaces are identified. It is shown that the time evolution typically occurs in each of the disjunct subspaces independently leading e.g. asymptotically to a non-Boltzmann equilibrium state. Based on these findings explicit results are obtained for two interacting electrons by means of a substantially improved real-time quantum Monte Carlo approach. In the incoherent regime an appropriate mapping of the many-body dynamics onto an isomorphic single particle motion allows for an approximate description of the numerical data in terms of rate equations. These results may lead to new control schemes of charge transport in tailored quantum systems as e.g. molecular chains or quantum dot arrays.Comment: 13 pages, 9 figures submitted to Phys. Rev.

    Electron transfer rates for asymmetric reactions

    Full text link
    We use a numerically exact real-time path integral Monte Carlo scheme to compute electron transfer dynamics between two redox sites within a spin-boson approach. The case of asymmetric reactions is studied in detail in the least understood crossover region between nonadiabatic and adiabatic electron transfer. At intermediate-to-high temperature, we find good agreement with standard Marcus theory, provided dynamical recrossing effects are captured. The agreement with our data is practically perfect when temperature renormalization is allowed. At low temperature we find peculiar electron transfer kinetics in strongly asymmetric systems, characterized by rapid transient dynamics and backflow to the donor.Comment: 13 pages, 4 figures, submitted to Chemical Physics Special Issue on the Spin-Boson Problem, ed. by H. Grabert and A. Nitza

    Wilson chains are not thermal reservoirs

    Full text link
    Wilson chains, based on a logarithmic discretization of a continuous spectrum, are widely used to model an electronic (or bosonic) bath for Kondo spins and other quantum impurities within the numerical renormalization group method and other numerical approaches. In this short note we point out that Wilson chains can not serve as thermal reservoirs as their temperature changes by a number of order Delta E when a finite amount of energy Delta E is added. This proves that for a large class of non-equilibrium problems they cannot be used to predict the long-time behavior.Comment: 2 page

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    Preferences for treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): a discrete choice experiment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is an increasing emphasis on patient empowerment and shared decision-making, subjective values for attributes associated with their treatment still need to be measured and considered. This contribution seeks to define properties of an ideal drug treatment of individuals concerned with Attention-Deficit/Hyperactivity Disorder (ADHD). Because of the lack of information on patient needs in the decision-makers assessment of health services, the individuals' preferences often play a subordinate role at present. Discrete Choice Experiments offer strategies for eliciting subjective values and making them accessible for physicians and other health care professionals.</p> <p>Methods</p> <p>The evidence comes from a Discrete Choice Experiments (DCE) performed in 2007. After reviewing the literature about preferences of ADHS we conducted a qualitative study with four focus groups consisting of five to eleven ADHS-patients each. In order to achieve content validity, we aimed at collecting all relevant factors for an ideal ADHS treatment. In a subsequent quantitative study phase (n = 219), data was collected in an online or paper-pencil self-completed questionnaire. It included sociodemographic data, health status and patients' preferences of therapy characteristics using direct measurement (23 items on a five-point Likert-scale) as well as a Discrete-Choice-Experiment (DCE, six factors in a fold-over design).</p> <p>Results</p> <p>Those concerned were capable of clearly defining success criteria and expectations. In the direct assessment and the DCE, respondents attached special significance to the improvement of their social situation and emotional state (relative importance 40%). Another essential factor was the desire for drugs with a long-lasting effect over the day (relative importance 18%). Other criteria, such as flexibility and discretion, were less important to the respondents (6% and 9%, respectively).</p> <p>Conclusion</p> <p>Results point out that ADHD patients and their family members have clear ideas of their needs. This is especially important against the backdrop of present discussions in the healthcare sector on the relevance of patient reported outcomes (PROs) and shared decision-making. The combination of the methods used in this study offer promising strategies to elicit subjective values and making them accessible for health care professionals in a manner that drives health choices.</p

    Centrality dependence of pi^[+/-], K^[+/-], p and p-bar production from sqrt(s_NN)=130 GeV Au + Au collisions at RHIC

    Get PDF
    Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.Comment: 6 pages, 3 figures, 1 table, 307 authors, accepted by Phys. Rev. Lett. on 9 April 2002. This version has minor changes made in response to referee Comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Net Charge Fluctuations in Au + Au Interactions at sqrt(s_NN) = 130 GeV

    Full text link
    Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.Comment: 6 pages, RevTeX 3, 3 figures, 307 authors, submitted to Phys. Rev. Lett. on 21 March, 2002. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (will be made) publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
    • …
    corecore