514 research outputs found

    Fingerprint Analysis with Marked Point Processes

    Get PDF
    We present a framework for fingerprint matching based on marked point process models. An efficient Monte Carlo algorithm is developed to calculate the marginal likelihood ratio for the hypothesis that two observed prints originate from the same finger against the hypothesis that they originate from different fingers. Our model achieves good performance on an NIST-FBI fingerprint database of 258 matched fingerprint pairs

    Laboratory assessment of noise annoyance from large wind turbines

    Get PDF

    Control of noise - systems for compact HVAC units

    Get PDF

    Indoor measurements of low-frequency noise for annoyance assessment

    Get PDF

    Measuring low-frequency noise indoors

    Get PDF

    Vestas’ selvmål

    Get PDF

    DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark.</p> <p>Results</p> <p>All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase of cytotoxicity (as lactate dehydrogenase release) and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA, which might be due to the much higher level of transition metals.</p> <p>Conclusion</p> <p>Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street particles.</p
    • …
    corecore