8,332 research outputs found

    Can on-farm bioenergy production make organic farming more sustainable? - A model for energy balance, nitrogen losses, and green house gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated bioenergy production

    Get PDF
    Can biogas and bioethanol production make organic farming more sustainable? - Results from a model for the fossil energy balance, Nitrogen losses, and greenhouse gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated biogas and bioethanol production. Dalgaard T1, Pugesgaard S1, Jørgensen U1, Olesen JE1, Møller HB1 and Jensen ES2 1) Dept. Agroecology and Environment. Faculty of Agricultural Sciences (DJF), University of Aarhus. DK-8830 Tjele. Denmark. Contact: [email protected] 2) Biosystems Department, Risø DTU, The National Laboratory for Sustainable Energy, The Technical University of Denmark DK-4000 Roskilde, Denmark The vision of organic farming systems, independent of fossil energy resources, with significantly lower nutrient losses, and no net contribution to the greenhouse gas emissions might be fulfilled via the integration of biogas production. This is an important hypothesis investigated in the www.bioconcens.elr.dk/uk/ research project. This poster illustrates preliminary results from a model for the fossil energy balance, Nitrogen losses, and greenhouse gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated biogas production in Denmark. The model will draw on results from previous models (e.g the farmGHG model), and includes a number of organic dairy farm type components, including information on livestock production, housing, manure storage, manure and fodder import/export, crop rotations, yield levels, and soil types. In addition, a biogas plant model component evaluates effects of the inclusion of variable amounts of manures and crop residues from the specified farm types, into the biogas energy production. The model is intended to result in an overall catchment balance for the following three types of indicators: 1) the fossil energy use – i.e. the net fossil energy use minus the bioenergy production, 2) losses of Nitrogen in the form of nitrates, ammonia and nitrous oxide, and 3) the emission of the three main greenhouse gasses from agriculture: carbon dioxide, nitrous oxide and methane, measured in carbon dioxide equivalents. Moreover, these indicator values are specified for each of the farm types included in the model, and for the biogas plant component. Finally, selected model results are discussed in relation to the overall hypothesis of the research project, and it is discussed how the integration of biogas production in organic farming, can help to improve the self-sufficiency in Nitrogen, and thereby reduce the import of nutrients to the organic farming systems

    Multimode optomechanical system in the quantum regime

    Full text link
    We realise a simple and robust optomechanical system with a multitude of long-lived (Q>107Q>10^7) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz96~\mathrm{kHz}) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K10\,\mathrm{K}). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz\lesssim 90\,\mathrm{ kHz}. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.Comment: 19 pages, 9 figure

    Effect of feeding fermentable fibrerich feedstuffs on meat quality with emphasis on chemical and sensory boar taint in entire male and female pigs

    Get PDF
    Skatole, androstenone and other compounds such as indole cause boar taint in entire male pork. However, female pigs also produce skatole and indole. The purpose of this experiment was to minimise boar taint and increase overall impression of sensory quality by feeding entire male and female pigs with fibrerich feedstuffs. The pigs have been fed three organic diets for either 1 or 2 weeks prior to slaughter of which two diets contained different fermentable fibre-rich feedstuffs – 10–13.3% dried chicory roots or 25% blue lupines. These two treatments were compared with pigs fed with an organic control diet for either 1 or 2 weeks prior to slaughter. Lupines significantly reduced skatole in blood and backfat for both genders after 1 week. Moreover, lupines showed negative impact on growth rate and feed conversion whilst chicory showed no significant differences in this respect. However, the indole concentration was significantly lower in chicory than lupine fed pigs. From a sensory perspective, chicory and lupine feeding reduced boar taint since odour and flavour of manure related to skatole and urine associated to androstenone were minimised. The level of boar taint in the entire male pigs was most effectively reduced after 14 days by both fibre-rich feeds while lupine had the largest influence on ‘‘boar” taint reduction in female pigs

    Geometric phases in open tripod systems

    Full text link
    We first consider stimulated Raman adibatic passages (STIRAP) in a closed four-level tripod system. In this case, the adiabatic eigenstates of the system acquire real geometric phases. When the system is open and subject to decoherence they acquire complex geometric phases that we determine by a Monte Carlo wave function approach. We calculate the geometric phases and the state evolution in the closed as well as in the open system cases and describe the deviation between these in terms of the phases acquired. When the system is closed, the adiabatic evolution implements a Hadamard gate. The open system implements an imperfect gate and hence has a fidelity below unity. We express this fidelity in terms of the acquired geometric phases.Comment: 10 pages 7 figure

    Measuring the effective phonon density of states of a quantum dot

    Get PDF
    We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from longitudinal acoustic phonons, and identifies the reason for the hitherto unexplained difference between non-resonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot. This quantity determines all phonon dephasing properties of the system and is found to be described well by a theory of bulk phonons.Comment: 5 pages, 3 figures, submitte
    • …
    corecore