41 research outputs found

    Trauma facilities in Denmark - a nationwide cross-sectional benchmark study of facilities and trauma care organisation

    Get PDF
    Background Trauma is a leading cause of death among adults aged < 44 years, and optimal care is a challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone for structured interviews. Results A total of 22 facilities in Denmark were found to receive traumatized patients. All facilities used a trauma care manual and all had a multidisciplinary trauma team. The study found three different trauma team activation criteria and nine different compositions of teams who participate in trauma care. Training was heterogeneous and, beyond the major trauma centers, databases were only maintained in a few facilities. Conclusion The study established an inventory of the existing Danish facilities that receive traumatized patients. The trauma team activation criteria and the trauma teams were heterogeneous in both size and composition. A national database for traumatized patients, research on nationwide trauma team activation criteria, and team composition guidelines are all called for

    Discoverer - Making commercial satellite operations in very low earth orbit a reality

    Get PDF
    DISCOVERER is a €5.7M European Commission funded Horizon 2020 project developing technologies to enable commercially-viable sustained-operation of satellites in very low Earth orbits. Why operate closer to the Earth? For communications applications latency is significantly reduced and link budgets improved, and for remote sensing improved link budgets allow higher resolution or smaller instruments, all providing cost benefits. In addition, all applications benefit from increased launch mass to lower altitudes, whilst end-of-life removal is ensured due to the increased atmospheric drag. However, this drag must also be minimised and compensated for. One of the key technologies being developed by DISCOVERER are materials that encourage specular reflection of the residual atmosphere at these altitudes. Combined with appropriate geometric designs these can significantly reduce drag, provide usable lift for aerodynamic attitude and orbit control, and improve the collection efficiency of aerodynamic intakes for atmosphere breathing electric propulsion systems, all of which are being developed as part of DISCOVERER. The paper provides highlights from the developments to date, and the potential for a new class of aerodynamic commercial satellites operating at altitudes below the International Space Station

    Concepts and Applications of Aerodynamic Attitude and Orbital Control for Spacecraft in Very Low Earth Orbit

    Get PDF
    Spacecraft operations below 450km, namely Very Low Earth Orbit (VLEO), can offer significant advantages over traditional low Earth orbits, for example enhanced ground resolution for Earth observation, improved communications latency and link budget, or improved signal-to-noise ratio. Recently, these lower orbits have begun to be exploited as a result of technology development, particularly component miniaturisation and cost-reduction, and concerns over the increasing debris population in commercially exploited orbits. However, the high cost of orbital launch and challenges associated with atmospheric drag, causing orbital decay and eventually re-entry are still a key barrier to their wider use for large commercial and civil spacecraft. Efforts to address the impact of aerodynamic drag are being sought through the development of novel drag-compensation propulsion systems and identification of materials which can reduce aerodynamic drag by specularly reflecting the incident gas. However, the presence of aerodynamic forces can also be utilised to augment or improve spacecraft operations at these very low altitudes by providing the capability to perform coarse pointing control and trim or internal momentum management for example. This paper presents concepts for the advantageous use of spacecraft aerodynamics developed as part of DISCOVERER, a Horizon 2020 funded project with the aim to revolutionise Earth observation satellite operations in VLEO. The combination of novel spacecraft geometries and use of aerodynamic control methods are explored, demonstrating the potential for a new generation of Earth observation satellites operating at lower altitudes

    Inductive Plasma Thruster (IPT) design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft, therefore an efficient propulsion system is required to extend the mission lifetime. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to use as propellant for an electric thruster. This would minimize the requirement of limited propellant availability. The system could be applied to any planet with atmosphere, enabling new mission at these altitude ranges for continuous orbiting. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such components are erosion source of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems (RIT and HET). IRS is developing within the DISCOVERER project an intake and a thruster for an ABEP system. This paper deals with the design and first operation of the inductive plasma thruster (IPT) developed at IRS. The paper describes its design aided by numerical tools such as HELIC and ADAMANT. Such a device is based on RF electrodeless discharge aided by externally applied static magnetic field. The IPT is composed by a movable injector, to variate the discharge channel length, and a movable electromagnet to variate position and intensity of the magnetic field. By changing these parameters along with a novel antenna design for electric propulsion, the aim is to achieve the highest efficiency for the ionization stage by enabling the formation of helicon-based discharge. Finally, the designed IPT is presented and the feature of the birdcage antenna highlighted

    Recommendations for the treatment of epilepsy in adult patients in general practice in Belgium: an update

    Get PDF
    In 2008, a group of Belgian epilepsy experts published recommendations for antiepileptic drug (AED) treatment of epilepsies in adults and children. Selection of compounds was based on the registration and reimbursement status in Belgium, the level of evidence for efficacy, common daily practice and the personal views and experiences of the authors. In November 2011 the validity of these recommendations was reviewed by the same group of Belgian epilepsy experts who contributed to the preparation of the original paper. The recommendations made in 2008 for initial monotherapy in paediatric patients were still considered to be valid, except for the first choice treatment for childhood absence epilepsy. This update therefore focuses on the treatment recommendations for initial monotherapy and add-on treatment in adult patients. Several other relevant aspects of treatment with AEDs are addressed, including considerations for optimal combination of AEDs (rational polytherapy), pharmacokinetic properties, pharmacodynamic and pharmacokinetic interaction profile, adverse effects, comorbidity, treatment of elderly patients, AED treatment during pregnancy, and generic substitution of AEDs

    HLA Alleles Associated with Slow Progression to AIDS Truly Prefer to Present HIV-1 p24

    Get PDF
    Background: The mechanism behind the association between human leukocyte antigen (HLA) molecules and the rate of HIV-1 disease progression is still poorly understood. Recent data suggest that ‘‘protective’’ HLA molecules, i.e. those associated with a low HIV-1 viral load and relatively slow disease progression, tend to present epitopes from the Gag capsid protein. Although this suggests that preferential targeting of Gag delays disease progression, the apparent preference for Gag could also be a side-effect of the relatively high immunogenicity of the protein. Methods and Findings: To separate cause and effect, we predicted HIV-1 epitopes from the whole genome of HIV-1, and found that protective HLA alleles have a true preference for the p24 Gag protein, while non-protective HLA alleles preferentially target HIV-1 Nef. In line with this, we found a significant negative correlation between the predicted affinity of the best-binding p24 epitopes and the relative hazard of HIV-1 disease progression for a large number of HLA molecules. When the epitopes targeted by protective HLA alleles were mapped to the known p24 structure, we found that mutations in these epitopes are likely to disturb the p24 dimer structure, which is expected to severely reduce the fitness of the virus. Conclusions: Our results suggest that the intrinsic preference of different HLA molecules to present p24 peptides explains why some HLA molecules are more protective than others
    corecore