28 research outputs found

    Oxygen atom transfer catalysis by dioxidomolybdenum(VI) complexes of pyridyl aminophenolate ligands

    Get PDF
    A series of new cationic dioxidomolybdenum(VI) complexes [MoO2(L-n)]PF6 (2-5) with the tripodal tetradentate pyridyl aminophenolate ligands HL2-HL5 have been synthesized and characterized. Ligands HL2-HL4 carry substituents in the 4-position of the phenolate ring, viz. Cl, Br and NO2, respectively, whereas the ligand HL5, N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N,N-bis(2-pyridylmethyl)amine, is a derivative of 3,5-di-tert-butylsalicylaldehyde. X-ray crystal structures of complexes 2, 3 and 5 reveal that they have a distorted octahedral geometry with the bonding parameters around the metal centres being practically similar. Stoichiometric oxygen atom transfer (OAT) properties of 5 with PPh3 were investigated using UV-Vis, P-31 NMR and mass spectrometry. In CH2Cl2 solution, a dimeric Mo(V) complex [(mu-O){MoO(L-5)}(2)](PF6)(2) 6 was formed while in methanol solution an air-sensitive Mo(IV) complex [MoO (OCH3)(L-5)] 7 was obtained. The solid-state structure of the mu-oxo bridged dimer 6 was determined by X-ray diffraction. Complex 7 is unstable under ambient conditions and capable of reducing DMSO, thus showing reactivity analogous to that of DMSO reductases. Similarly, the OAT reactions of complexes 2-4 also resulted in the formation of dimeric Mo(V) and unsaturated monomeric Mo(IV) complexes that are analogous to complexes 6 and 7. Catalytic OAT at 25 degrees C could also be observed, using complexes 1-5 as catalysts for oxidation of PPh3 in deuterated dimethylsulfoxide (DMSO d(6)), which functioned both as a solvent and oxidant. All complexes were also tested as catalysts for sulfoxidation of methyl-p-tolylsulfide and epoxidation of various alkene substrates with tert-butyl hydroperoxide (TBHP) as an oxidant. Complex 1 did not exhibit any sulfoxidation activity under the conditions used, while 2-5 catalyzed the sulfoxidation of methyl-p-tolylsulfide. Only complexes 2 and 3, with ligands containing halide substituents, exhibited good to moderate activity for epoxidation of all alkene substrates studied, and, in general, good activity for all molybdenum(VI) catalysts was only exhibited when cis-cyclooctene was used as a substrate. No complex catalysed epoxidation of cis-cyclooctene when an aqueous solution of H2O2 was used as potential oxidant. (C) 2021 The Authors. Published by Elsevier Ltd

    Interaction of Metal Oxido Compounds with B(C6F5)3

    No full text
    Lewis acidbase pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metalbased catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redoxactive metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transitionmetal or rareearthmetal compounds with the Lewis acid B(C6F5)3. It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.(VLID)4610241Accepted versio

    (Acetamide-ÎșO){2,2â€Č,2â€Čâ€Č-boranetriyltris[6-tert-butyl-4-methylpyridazine-3(2H)-thione]-Îș4B,S,Sâ€Č,Sâ€Čâ€Č}copper(I) trifluoromethanesulfonate chloroform disolvate

    No full text
    In the title solvated complex salt, [Cu(C27H39BN6S3)(C2H5NO)](CF3O3S)·2CHCl3, the CuI atom is coordinated by the three S atoms of the pyridazine-3-thione rings in the equatorial plane [Cu—S = 2.3072 (4)–2.3280 (4) Å] and the B atom of the scorpionate ligand and the O atom of an acetamide ligand as the apices of a trigonal bipyramid [Cu—B = 2.0456 (16) Å and Cu—O = 1.9957 (11) Å]. The amide group of the latter ligand is involved in a bifurcated hydrogen bond to the trifluoromethanesulfonate anion

    {(Hydrogen 2,2â€Č,2â€Čâ€Č-boranetriyl)tris[6-tert-butyl-4-methylpyridazine-3(2H)-thione]-Îș3H,S,Sâ€Č}(triphenylphosphane-ÎșP)copper(I) chloroform disolvate

    No full text
    In the title complex, [Cu(C27H40BN6S3)(C18H15P)]·2CHCl3, the CuI atom is surrounded in a trigonal-planar arrangement by the triphenylphosphane ligand and two of the three S atoms of the scorpionate ligand with an additional 3-center–2-electron B—H...Cu interaction, with the H atom as the apex of a pyramid [B—H = 1.140 (17) Å and Cu—H = 1.826 (16) Å]

    Dioxidomolybdenum(VI) and -tungsten(VI) complexes with tetradentate amino bisphenolates as catalysts for epoxidation

    No full text
    Sixteen molybdenum and tungsten complexes with tripodal or linear tetradentate amino bisphenol ligands were studied as catalysts for the epoxidation of cis-cyclooctene, 1-octene, styrene, limonene and α-terpineol. These complexes can be divided into different categories upon key features, i.e. central metal (Mo versus W), side-arm donor (O versus N), hybridization of the N-donor (pyridine versus amine), ligand geometry (tripodal versus linear diamine) and sterical hindrance (Me versus tert-Bu substituents in the phenol part). All complexes can catalyse selectively the epoxidation of cis-cyclooctene by tert-butylhydroperoxide whereas the activities and selectivities towards other olefins (1-octene, styrene, limonene and α-terpineol) show large differences. When H2O2 was used as an oxidant in the epoxidation of cis-cyclooctene, only two of eight Mo complexes and four of eight W complexes showed any activity. This study revealed no clear correlations between the Mo and W catalyst structures and their activities.peerReviewe

    Synthesis of High Molar Mass Poly(phenylene methylene) Catalyzed by Tungsten(II) Compounds

    No full text
    Poly(phenylene methylene)s (PPMs) with high molar masses were isolated by polymerization of benzyl chloride catalyzed with tungsten(II) compounds and subsequent fractionation. Four different tungsten(II) catalysts were successfully exploited for the polymerization, for which a strict temperature profile was developed. The PPMs possessed roughly a trimodal molar mass distribution. Simple fractionation by phase separation of 2-butanone solutions allowed to effectively segregate the products primarily into PPM of low molar mass (Mn = 1600 g mol−1) and high molar mass (Mn = 167,900 g mol−1); the latter can be obtained in large quantities up to 50 g. The evolution of the trimodal distribution and the monomer conversion was monitored by gel permeation chromatography (GPC) and 1H NMR spectroscopy, respectively, over the course of the polymerization. The results revealed that polymerization proceeded via a chain-growth mechanism. This study illustrates a new approach to synthesize PPM with hitherto unknown high molar masses which opens the possibility to explore new applications, e.g., for temperature-resistant coatings, fluorescent coatings, barrier materials or optical materials.ISSN:2073-436

    Hydrogen bond donor functionalized dioxo-molybdenum(VI) complexes as robust and highly efficient precatalysts for alkene epoxidation

    No full text
    The synthesis of four novel, tridentate aminophenolate ligands HL1-HL4, bearing amide functionalities is reported. Reaction of these ligands with a dioxido molybdenum(VI) precursor led, depending on the choice of solvent, to mononuclear complexes of the type [MoO2 L(OMe)] (2, 4, 6) or dinuclear complexes [(VLID)461022

    Mono- and Hexanuclear Zinc Halide Complexes with Soft Thiopyridazine Based Scorpionate Ligands

    No full text
    Scorpionate ligands with three soft sulfur donor sites have become very important in coordination chemistry. Despite its ability to form highly electrophilic species, electron-deficient thiopyridazines have rarely been used, whereas the chemistry of electron-rich thioheterocycles has been explored rather intensively. Here, the unusual chemical behavior of a thiopyridazine (6-tert-butylpyridazine-3-thione, HtBuPn) based scorpionate ligand towards zinc is reported. Thus, the reaction of zinc halides with tris(6-tert-butyl-3-thiopyridazinyl)borate Na[TntBu] leads to the formation of discrete torus-shaped hexameric zinc complexes [TntBuZnX]6 (X = Br, I) with uncommonly long zinc halide bonds. In contrast, reaction of the sterically more demanding ligand K[TnMe,tBu] leads to decomposition, forming Zn(HPnMe,tBu)2X2 (X = Br, I). The latter can be prepared independently by reaction of the respective zinc halides and two equiv of HPnMe,tBu. The bromide compound was used as precursor which further reacts with K[TnMe,tBu] forming the mononuclear complex [TnMe,tBu]ZnBr(HPnMe,tBu). The molecular structures of all compounds were elucidated by single-crystal X-ray diffraction analysis. Characterization in solution was performed by means of 1H, 13C and DOSY NMR spectroscopy which revealed the hexameric constitution of [TntBuZnBr]6 to be predominant. In contrast, [TnMe,tBu]ZnBr(HPnMe,tBu) was found to be dynamic in solution

    Oxygen activation and catalytic aerobic oxidation by Mo(IV)/Mo(VI) complexes with iminophenolate ligands

    No full text
    Synthesis of molybdenum(vi) dioxido complexes 1-3, coordinated by one or two functionalized iminophenolate ligands HL1 or HL2, bearing a donor atom side chain or a phenyl substituent, respectively, allowed for systematic investigation of the oxygen atom transfer (OAT) reactivity of such complexes towards phosphanes. Depending on stoichiometry and employed phosphane (PMe3 or PPh3), different molybdenum(iv) and molybdenum(v) complexes 4-7 were obtained. Whereas molybdenum(iv) complexes 4 and 5, bearing a terminal PMe3 ligand, readily reacted with molecular O2 to form oxido peroxido complexes 8 and 9, phosphane free -oxido bridged dinuclear molybdenum(v) complexes 6 and 7 proved to be stable towards oxidation with molecular O2 under ambient conditions. Single-crystal X-ray diffraction analyses revealed different isomeric structures in the solid state for dioxido complexes 1 and 2 in comparison with oxido phosphane complex 5, dinuclear oxido -oxido complex 6 and oxido peroxido complexes 8 and 9, pointing towards an isomeric rearrangement during OAT. Compounds 1 and 2 were furthermore tested for their ability to catalyze the aerobic oxidation of PMe3 and PPh3. A significant difference in catalytic activity has been observed in the oxidation of PMe3, where complex 1 bearing donor atom functionalized ligands led to higher conversion and selectivity than complex 2 coordinated by phenyl iminophenolate ligands. In the oxidation of PPh3, complex 2 leads to higher conversion compared to 1. In a control experiment, phenyl-based dinuclear -oxido complex 7, derived from complex 2, was found to be catalytically active, which suggests a lower energy barrier for disproportionation into [MoO(L)2] and [MoO2(L)2] in comparison with methoxypropylene based compound 6, a prerequisite for subsequent reactivity toward molecular O2.(VLID)461021
    corecore