45 research outputs found
Regression analysis with missing data and unknown colored noise: application to the MICROSCOPE space mission
The analysis of physical measurements often copes with highly correlated
noises and interruptions caused by outliers, saturation events or transmission
losses. We assess the impact of missing data on the performance of linear
regression analysis involving the fit of modeled or measured time series. We
show that data gaps can significantly alter the precision of the regression
parameter estimation in the presence of colored noise, due to the frequency
leakage of the noise power. We present a regression method which cancels this
effect and estimates the parameters of interest with a precision comparable to
the complete data case, even if the noise power spectral density (PSD) is not
known a priori. The method is based on an autoregressive (AR) fit of the noise,
which allows us to build an approximate generalized least squares estimator
approaching the minimal variance bound. The method, which can be applied to any
similar data processing, is tested on simulated measurements of the MICROSCOPE
space mission, whose goal is to test the Weak Equivalence Principle (WEP) with
a precision of . In this particular context the signal of interest is
the WEP violation signal expected to be found around a well defined frequency.
We test our method with different gap patterns and noise of known PSD and find
that the results agree with the mission requirements, decreasing the
uncertainty by a factor 60 with respect to ordinary least squares methods. We
show that it also provides a test of significance to assess the uncertainty of
the measurement.Comment: 12 pages, 4 figures, to be published in Phys. Rev.
Solar radiation pressure effects on very high-eccentric formation flying
A real alternative to Lagrange point very low perturbed orbits, for universe observation missions, is high eccentric Earth orbits. Combination of high eccentricity and very large semi-major axis leads to orbits with an important part of flight time far from Earth and its perturbations. Modeling this particular relative motion is the scoop of this paper. Main perturbation in HEO orbits are solar radiation pressure (SRP) and lunisolar effects, but formations are mainly affected by SRP effects. The modellization of its effects is done in two ways. First we introduce the SRP effects in the equations of the relative acceleration. Second, we obtain explicit analytical expressions of the temporal evolution of the relative motion. Resulting expressions enable very fast computations. These models are used to study HEO missions. We focus on two different problems: estimation of thrust for station keeping and evaluation of collision risk. We also consider the influence of the difference of ratio surface/mass between satellites
Pioneer 10 data analysis: Investigation on periodic anomalies
International audienceThe Pioneer Anomaly refers to the difference between the expected theoretical tra jectory of the Pioneer 10 and 11 spacecrafts and the observed tra jectory through Doppler measurements. It has been interpreted by the Jet Propulsion Laboratory (JPL) as a constant anomalous acceleration (Anderson et al. 2002). For this analysis, the Groupe Anomalie Pioneer (GAP) composed of several french laboratories has developped a specific tra jectography software, ODYSSEY, which enables to test different anomaly models. The paper will present, after a brief description of the software and the implemented models, the last results obtained: in addition to the constant anomaly, time dependent signatures of the anomaly have been noticed which can be described geometrically. The fit of the Pioneer 10 data with these new models yields a reduction of the standard deviation of the residual by a factor 2 with respect to the simple constant anomaly
Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies
This paper reports the results of an analysis of the Doppler tracking data of
Pioneer probes which did show an anomalous behaviour. A software has been
developed for the sake of performing a data analysis as independent as possible
from that of J. Anderson et al. \citep{anderson}, using the same data set. A
first output of this new analysis is a confirmation of the existence of a
secular anomaly with an amplitude about 0.8 nms compatible with that
reported by Anderson et al. A second output is the study of periodic variations
of the anomaly, which we characterize as functions of the azimuthal angle
defined by the directions Sun-Earth Antenna and Sun-Pioneer. An
improved fit is obtained with periodic variations written as the sum of a
secular acceleration and two sinusoids of the angles and .
The tests which have been performed for assessing the robustness of these
results are presented.Comment: 13 pages, 6 figures, minor amendment
LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection
In this paper we analyze quantitatively the concept of LAGEOS--type
satellites in critical supplementary orbit configuration (CSOC) which has
proven capable of yielding various observables for many tests of General
Relativity in the terrestrial gravitational field, with particular emphasis on
the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction,
Conclusions, reference added, accepted for publication in Classical and
Quantum Gravit
A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876
Investigations of two resonant planets orbiting a star or two resonant
satellites orbiting a planet often rely on a few resonant and secular terms in
order to obtain a representative quantitative description of the system's
dynamical evolution. We present a semianalytic model which traces the orbital
evolution of any two resonant bodies in a first- through fourth-order
eccentricity or inclination-based resonance dominated by the resonant and
secular arguments of the user's choosing. By considering the variation of
libration width with different orbital parameters, we identify regions of phase
space which give rise to different resonant ''depths,'' and propose methods to
model libration profiles. We apply the model to the GJ 876 extrasolar planetary
system, quantify the relative importance of the relevant resonant and secular
contributions, and thereby assess the goodness of the common approximation of
representing the system by just the presumably dominant terms. We highlight the
danger in using ''order'' as the metric for accuracy in the orbital solution by
revealing the unnatural libration centers produced by the second-order, but not
first-order, solution, and by demonstrating that the true orbital solution lies
somewhere ''in-between'' the third- and fourth-order solutions. We also present
formulas used to incorporate perturbations from central-body oblateness and
precession, and a protoplanetary or protosatellite thin disk with gaps, into a
resonant system. We quantify these contributions to the GJ 876 system, and
thereby highlight the conditions which must exist for multi-planet exosystems
to be significantly influenced by such factors. We find that massive enough
disks may convert resonant libration into circulation; such disk-induced
signatures may provide constraints for future studies of exoplanet systems.Comment: 39 pages of body text, 21 figures, 5 tables, 1 appendix, accepted for
publication in Celestial Mechanics and Dynamical Astronom
Utilisation du développement de kaula dans une théorie par transformations canoniques
National audienc
Two algorithms to compute Hansen-like coefficients with respect to the eccentric anomaly
International audienceConsidering a point of polar coordinates (r,ν) on an elliptic orbit of semi-major axis a, we set up and compare two algorithms based on recurrence relations to compute the Hansen-like coefficients View the MathML source, which are the coefficients of the expansion of (r/a)nexpimν in Fourier series of the eccentric anomaly. Both Hansen-like coefficients and their derivatives with respect to the eccentricity are considered, with a special focus on the case 0⩽|m|⩽n arising in the expression of the gravity potential due to a body external to the elliptic orbit. We provide two efficient algorithms to compute a table of coefficients with a simple recursive process. One algorithm uses some recurrence relations linking directly to the View the MathML source whereas the other algorithm involves the generalized Laplace coefficients View the MathML source (Laskar, 2005). Numerical behavior of the algorithms is investigated for low and high eccentricities. Both algorithms provide a relative accuracy better than 10-14 for n⩽30. Also, they are at least 10 time faster than an algorithm based on the FFT method (Klioner et al., 1997)
Invariant Relative Orbits Taking into Account Third-Body Perturbation,
International audienceFor a satellite in an orbit of more than 1600 km in altitude, the effects of Sun and Moon on the orbit can't be negligible. Working with mean orbital elements, the secular drift of the longitude of the ascending node and the sum of the argu-ment of perigee and mean anomaly are set equal between two neighboring orbits to negate the separation over time due to the potential of the Earth and the third body effect. The expressions for the second order conditions that guaran-tee that the drift rates of two neighboring orbits are equal on the average are derived. To this end, the Hamiltonian was developed. The expressions for the non-vanishing time rate of change of canonical elements are obtained