1,651 research outputs found

    GRB 990123: Reverse and Internal Shock Flashes and Late Afterglow

    Get PDF
    The prompt (t \siml 0.16 days) light curve and initial 9-th magnitude optical flash from GRB 990123 can be attributed to a reverse external shock, or possibly to internal shocks. We discuss the time decay laws and spectral slopes expected under various dynamical regimes, and discuss the constraints imposed on the model by the observations, arguing that they provide strongly suggestive evidence for features beyond those in the simple standard model. The longer term afterglow behavior is discussed in the context of the forward shock, and it is argued that, if the steepening after three days is due to a jet geometry, this is likely to be due to jet-edge effects, rather than sideways expansion.Comment: M.N.R.A.S., subm. 2/26/99; (preprint uses aaspp4.sty), 9 page

    Population III Gamma Ray Bursts

    Full text link
    We discuss a model of Poynting-dominated gamma-ray bursts from the collapse of very massive first generation (pop. III) stars. From redshifts of order 20, the resulting relativistic jets would radiate in the hard X-ray range around 50 keV and above, followed after roughly a day by an external shock component peaking around a few keV. On the same timescales an inverse Compton component around 75 GeV may be expected, as well as a possible infra-red flash. The fluences of these components would be above the threshold for detectors such as Swift and Fermi, providing potentially valuable information on the formation and properties of what may be the first luminous objects and their black holes in the high redshift Universe.Comment: 12 pages; Apj, subm. 12/10/2009; accepted 04/12/201

    Collapsar Jets, Bubbles and Fe Lines

    Get PDF
    In the collapsar scenario, gamma ray bursts are caused by relativistic jets expelled along the rotation axis of a collapsing stellar core. We discuss how the structure and time-dependence of such jets depends on the stellar envelope and central engine properties, assuming a steady jet injection. It takes a few seconds for the jet to bore its way through the stellar core; most of the energy output during that period goes into a cocoon of relativistic plasma surrounding the jet. This material subsequently forms a bubble of magnetized plasma that takes several hours to expand, subrelativistically, through the envelope of a high-mass supergiant. Jet break-through and a conventional burst would be expected not only in He stars but possibly also in blue supergiants. Shock waves and magnetic dissipation in the escaping bubble can contribute a non thermal UV/X-ray afterglow, and also excite Fe line emission from thermal gas, in addition to the standard jet deceleration power-law afterglow.Comment: Ap.J. Letters, accepted 6/20/01, first subm 4/24/01; aaspp4, 9 pages, no figures; minor revision

    Power Density Spectra of Gamma-Ray Bursts in the Internal Shock Model

    Get PDF
    We simulate Gamma-Ray Bursts arising from internal shocks in relativistic winds, calculate their power density spectrum (PDS), and identify the factors to which the PDS is most sensitive: the wind ejection features, which determine the wind dynamics and its optical thickness, and the energy release parameters, which give the pulse 50-300 keV radiative efficiency. For certain combinations of ejection features and wind parameters the resulting PDS exhibits the features observed in real bursts. We found that the upper limit on the efficiency of conversion of wind kinetic energy into 50-300 keV photons is \sim 1%. Winds with a modulated Lorentz factor distribution of the ejecta yield PDSs in accord with current observations and have efficiencies closer to 10310^{-3}, while winds with a random, uniform Lorentz factor ejection must be optically thick to the short duration pulses to produce correct PDSs, and have an overall efficiency around 10410^{-4}.Comment: 6 pages, 4 figures, Latex, submitted to The Astrophysical Journal (05/04/99

    Gamma-Ray Bursts from Up-Scattered Self-Absorbed Synchrotron Emission

    Get PDF
    We calculate the synchrotron self-Compton emission from internal shocks occurring in relativistic winds as a source of gamma-ray bursts, with allowance for self-absorption. For plausible model parameters most pulses within a Gamma-Ray Burst (GRB) are optically thick to synchrotron self-absorption at the frequency at which most electrons radiate. Up-scattering of photon number spectra harder than ν0\nu^0 (such as the self-absorbed emission) yields inverse Compton photon number spectra that are flat, therefore our model has the potential of explaining the low-energy indices harder than ν2/3\nu^{-2/3} (the optically thin synchrotron limit) that have been observed in some bursts. The optical counterparts of the model bursts are sufficiently bright to be detected by such experiments as LOTIS, unless the magnetic field is well below equipartition.Comment: to be published in ApJL, 5 pages, 3 color figure

    Probing the birth of fast rotating magnetars through high-energy neutrinos

    Full text link
    We investigate the high-energy neutrino emission expected from newly born magnetars surrounded by their stellar ejecta. Protons might be accelerated up to 0.1-100 EeV energies possibly by, e.g., the wave dissipation in the winds, leading to hadronic interactions in the stellar ejecta. The resulting PeV-EeV neutrinos can be detected by IceCube/KM3Net with a typical peak time scale of a few days after the birth of magnetars, making the characteristic soft-hard-soft behavior. Detections would be important as a clue to the formation mechanism of magnetars, although there are ambiguities coming from uncertainties of several parameters such as velocity of the ejecta. Non-detections would also lead to useful constraints on the scenario.Comment: 5 pages, 3 figures, accepted for publication in PR

    Using Eco-schemes in the new CAP: a guide for managing authorities

    Get PDF
    This guide has been developed primarily for policy makers and Member State officials involved in the national and regional programming processes of the CAP Strategic Plans (CSPs). This process might involve different administrative levels (national, regional, local), different political fields (agriculture, environmental, food and health ministries), different public bodies (paying agencies, environmental agencies, rural development offices) depending on the administrative setting of each MS. In addition, the guide provides support to other stakeholders and practitioners from the public and private sectors and civil society (including agricultural, environmental, food, health and consumer NGOs), with a direct or indirect involvement in the programming and evaluation process of the CSPs. Since these new plans will have a strong impact on MS environments, agricultural sectors, rural areas, etc., the engagement of all stakeholders will be an important asset for supporting an effective implementation of the CSP objectives. There are many others with potential interests in the contents of this guide. EU citizens have demonstrated their increasing interest in the contents of the CAP objectives and policy framework, as demonstrated both by civil society initiatives and consumption decisions. The contents of this guide may therefore also be of interest to other societal actors with interests in agricultural and environmental policies, such as researchers, journalists, trade unions, and civil society organizations. However, the guide is intentionally more focused on the technical needs of those involved in CSP development and implementation

    Length-scale-dependent phase transition in BSCCO single crystals

    Full text link
    Electrical transport measurements using a multiterminal configuration are presented, which prove that in BSCCO single crystals near the transition temperature in zero external magnetic field the secondary voltage is induced by thermally activated vortex loop unbinding. The phase transition between the bound and unbound states of the vortex loops was found to be below the temperature where the phase coherence of the superconducting order parameter extends over the whole volume of the sample. We show experimentally that 3D/2D phase transition in vortex dimensionality is a length-scale-dependent layer decoupling process and takes place simultaneously with the 3D/2D phase transition in superconductivity at the same temperature.Comment: 14 pages, 4 figures, to be published in Philos. Ma

    Multi-GeV Neutrino Emission from Magnetized Gamma Ray Bursts

    Full text link
    We investigate the expected neutrino emissivity from nuclear collisions in magnetically dominated collisional models of gamma-ray bursts, motivated by recent observational and theoretical developments. The results indicate that significant multi-GeV neutrino fluxes are expected for model parameter values which are typical of electromagnetically detected bursts. We show that for detecting at least one muon event in Icecube and its Deep Core sub-array, a single burst must be near the high end of the luminosity function and at a redshift z0.2z\lesssim 0.2. We also calculate the luminosity and distance ranges that can generate 0.0110.01-1 muon events per GRB in the same detectors, which may be of interest if simultaneously detected electromagnetically, or if measured with future extensions of Icecube or other neutrino detectors with larger effective volume and better sensitivity.Comment: 12 pages, 7 figures, accepted version for Phys.Rev.
    corecore