46 research outputs found

    TLR2 and TLR4 triggering exerts contrasting effects with regard to HIV-1 infection of human dendritic cells and subsequent virus transfer to CD4+ T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recognition of microbial products through Toll-like receptors (TLRs) initiates inflammatory responses orchestrated by innate immune cells such as dendritic cells (DCs). As these cells are patrolling mucosal surfaces, a portal of entry for various pathogens including human immunodeficiency virus type-1 (HIV-1), we investigated the impact of TLR stimulation on productive HIV-1 infection of DCs and viral spreading to CD4<sup>+ </sup>T cells.</p> <p>Results</p> <p>We report here that engagement of TLR2 on DCs increases HIV-1 transmission toward CD4<sup>+ </sup>T cells by primarily affecting <it>de novo </it>virus production by DCs. No noticeable and consistent effect was observed following engagement of TLR5, 7 and 9. Additional studies indicated that both HIV-1 infection of DCs and DC-mediated virus transmission to CD4<sup>+ </sup>T cells were reduced upon TLR4 triggering due to secretion of type-I interferons.</p> <p>Conclusion</p> <p>It can thus be proposed that exposure of DCs to TLR2-binding bacterial constituents derived, for example, from pathogens causing sexually transmissible infections, might influence the process of DC-mediated viral dissemination, a phenomenon that might contribute to a more rapid disease progression.</p

    LFA-1 Is a Key Determinant for Preferential Infection of Memory CD4(+) T Cells by Human Immunodeficiency Virus Type 1

    No full text
    Memory CD4(+) T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4(+) T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4(+) T cells were found to be more susceptible than naive CD4(+) T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4(+) T cells

    Tetraspanin CD81 Provides a Costimulatory Signal Resulting in Increased Human Immunodeficiency Virus Type 1 Gene Expression in Primary CD4(+) T Lymphocytes through NF-ÎșB, NFAT, and AP-1 Transduction Pathways

    No full text
    The tetraspanin superfamily member CD81 has been shown to form microdomains in the plasma membrane and to participate in the recruitment of numerous adhesion molecules, receptors, and signaling proteins in the central zone of the immune synapse. Beside its structural role, CD81 also delivers a cosignal for T cells to trigger cytokine production and cellular proliferation, thus suggesting a key role in some fundamental biological functions. It has been shown that signaling events initiated through the T-cell receptor (TCR)/CD3 complex and the coactivator CD28 positively affect human immunodeficiency virus type 1 (HIV-1) gene expression, but no study had investigated the putative costimulatory activity of CD81 on HIV-1 transcriptional activity. We observed that CD81 engagement potentiates TCR/CD3-mediated signaling, resulting in an enhancement of HIV-1 transcription and de novo virus production in both established Jurkat cells and primary CD4(+) T lymphocytes at a magnitude that approximates that with CD28. These observations were made by using transiently transfected plasmids (i.e., nonintegrated viral DNA) and fully competent viruses (i.e., stably integrated provirus). Moreover, the CD81-mediated enhancement of HIV-1 gene expression is linked with increased nuclear translocation of transcription factors known to positively regulate virus transcription, i.e., NF-ÎșB, NFAT, and AP-1. These findings suggest that engagement of CD81 decreases the signaling threshold required to initiate TCR/CD3-mediated induction of integrated HIV-1 proviral DNA in primary CD4(+) T cells

    Presence of Host ICAM-1 in Human Immunodeficiency Virus Type 1 Virions Increases Productive Infection of CD4(+) T Lymphocytes by Favoring Cytosolic Delivery of Viral Material

    No full text
    Although there is now convincing evidence that the infectivity of human immunodeficiency virus type 1 (HIV-1) is increased by incorporation of host intercellular adhesion molecule 1 (ICAM-1) in budding virions, the exact mechanism(s) through which ICAM-1 can so significantly affect HIV-1 biology remains obscure. To address this question, we focused our attention on the most proximal events in the virus life cycle. We made comparative analyses to estimate attachment and internalization of isogenic HIV-1 particles either lacking or bearing host-derived ICAM-1. Using attachment-and-entry assays and confocal fluorescence microscopy, we found that virus binding and uptake were both markedly enhanced by insertion of ICAM-1 within the virus envelope when PM1 lymphoid cells and primary human cells (i.e., peripheral blood lymphocytes and purified CD4(+) T cells) were used as targets. Moreover, ICAM-1-bearing virions entered cells with faster uptake kinetics than viruses devoid of ICAM-1. Experiments conducted with fully competent viruses further confirmed the positive effect of virion-anchored host ICAM-1 on HIV-1 replication. Interestingly, subcellular-fractionation assays revealed that ICAM-1 incorporation modifies the HIV-1 entry route by increasing the level of viral material released in the cytosol, a process of internalization known to be mediated mainly by pH-independent membrane fusion and to result in productive infection. A virion-based fusion assay confirmed that the acquisition of ICAM-1 increases the efficiency of productive HIV-1 entry in primary CD4(+) T lymphocytes. These observations provide new insights into how interactions other than those with gp120 and CD4-coreceptor complex can modulate the process of productive HIV-1 infection in CD4(+) T lymphocytes, a cell target highly relevant to HIV-1 pathogenesis

    TLR2 Signaling Renders Quiescent Naive and Memory CD4 +

    No full text

    LFA-1 Antagonists as Agents Limiting Human Immunodeficiency Virus Type 1 Infection and Transmission and Potentiating the Effect of the Fusion Inhibitor T-20▿

    No full text
    Adhesion molecules are known to play major roles in the initiation and stabilization of cell-to-cell contacts during the immunological response. Human immunodeficiency virus type 1 (HIV-1) exploits those interactions to facilitate infection and propagation processes. The primary objective of the present study was to investigate the ability of antagonists specific for lymphocyte function-associated antigen 1 (LFA-1) to diminish HIV-1 infection and transmission. We demonstrate here that LFA-1 antagonists can significantly reduce HIV-1 replication in primary human cells and virus propagation by affecting cell-to-cell interactions. Moreover, the inhibition of LFA-1-mediated adhesion events also potentiates the antiviral efficacy of the peptide fusion inhibitor T-20. Altogether, our data suggest that LFA-1 antagonists represent promising antiviral agents. Antiadhesion therapy could be considered a complementary strategy targeting cellular functions essential for HIV-1 spreading and against which the combined therapy currently used displays a limited efficacy

    An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis.

    Get PDF
    The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity.In this study, we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion.Treatment with anti-S100A9 antibodies improved the clinical score by 50%, diminished immune cell infiltration, reduced inflammatory cytokines, both in serum and in the joints, and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα, IL-1ÎČ and IL-6, and of chemokines like MIP-1α and MCP-1.The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively, our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore, S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed

    Dectin-1/TLR2 and NOD2 Agonists Render Dendritic Cells Susceptible to Infection by X4-Using HIV-1 and Promote <i>cis</i>-Infection of CD4<sup>+</sup> T Cells

    Get PDF
    <div><p>HIV-1 pathogenesis is intimately linked with microbial infections and innate immunity during all stages of the disease. While the impact of microbial-derived products in transmission of R5-using virus to CD4<sup>+</sup> T cells by dendritic cells (DCs) has been addressed before, very limited data are available on the effect of such compounds on DC-mediated dissemination of X4-tropic variant. Here, we provide evidence that treatment of DCs with dectin-1/TLR2 and NOD2 ligands increases <i>cis</i>-infection of autologous CD4<sup>+</sup> T cells by X4-using virus. This phenomenon is most likely associated with an enhanced permissiveness of DCs to productive infection with X4 virus, which is linked to increased surface expression of CXCR4 and the acquisition of a maturation profile by DCs. The ensuing DC maturation enhances susceptibility of CD4<sup>+</sup> T cells to productive infection with HIV-1. This study highlights the crucial role of DCs at different stages of HIV-1 infection and particularly in spreading of viral strains displaying a X4 phenotype.</p></div
    corecore