99 research outputs found

    The pathogenic and colonization potential of Candida africana

    Get PDF
    The Candida albicans population displays high genetic diversity illustrated by 18-well differentiated genetic clusters. Cluster 13, also known as Candida africana, is an outlying cluster and includes strains first described as atypical C. albicans isolates of vaginal origin, showing apparent tropism for the female genital tract. In our study, we combined in vitro, and in vivo models to explore the colonization and pathogenic potential of C. africana. We report that C. africana has similar fitness to C. albicans when it comes to colonization of the oral and vaginal mucosa, however it has decreased fitness in gastro-intestinal colonization and systemic infection. Interestingly, despite high population homogeneity, our in vitro data highlighted for the first time a variability in terms of growth rate, biofilm formation and filamentation properties between C. africana strains. Overall, our data lays the foundations for exploring specific features of C. africana that might contribute to its apparent niche restriction

    The pathogenic and colonization potential of Candida africana

    Get PDF
    The Candida albicans population displays high genetic diversity illustrated by 18-well differentiated genetic clusters. Cluster 13, also known as Candida africana, is an outlying cluster and includes strains first described as atypical C. albicans isolates of vaginal origin, showing apparent tropism for the female genital tract. In our study, we combined in vitro, and in vivo models to explore the colonization and pathogenic potential of C. africana. We report that C. africana has similar fitness to C. albicans when it comes to colonization of the oral and vaginal mucosa, however it has decreased fitness in gastro-intestinal colonization and systemic infection. Interestingly, despite high population homogeneity, our in vitro data highlighted for the first time a variability in terms of growth rate, biofilm formation and filamentation properties between C. africana strains. Overall, our data lays the foundations for exploring specific features of C. africana that might contribute to its apparent niche restriction

    High Performance of Histidine-Rich Protein 2 Based Rapid Diagnostic Tests in French Guiana are Explained by the Absence of pfhrp2 Gene Deletion in P. falciparum

    Get PDF
    BACKGROUND: Care for malaria patients in endemic areas has been improved through the increasing use of Rapid Diagnostic Tests (RDTs). Most RDTs target the histidine-rich protein-2 antigen (PfHRP2) to detect P. falciparum, as it is abundant and shows great heat stability. However, their use in South America has been widely questioned following a recent publication that pinpoints the high prevalence of Peruvian field isolates lacking the gene encoding this protein. In the remote rural health centers of French Guiana, RDTs are the main diagnosis tools. Therefore, a study of PfHRP2 RDT performances and pfhrp2 genotyping was conducted to determine whether a replacement of the current pLDH-based kit could be considered. METHODS: The performance study compared the SD Malaria Ag test P.f/Pan® kit with the current gold standard diagnosis by microscopy. The prevalence of pfhrp2 and pfhrp3 deletions were evaluated from 221 P. falciparum isolates collected between 2009 and 2011 in French Guiana. RESULTS: Between January 2010 and August 2011, 960 suspected cases of malaria were analyzed using microscopy and RDTs. The sensitivity of the SD Malaria Ag test P.f/Pan® for detection of P. falciparum was 96.8% (95% CI: 90.9-99.3), and 86.0% (95% CI: 78.9-91.5) for the detection of P. vivax. No isolates (95% CI: 0-4.5) lacking either exon of the pfhrp2 gene were identified among the 221 P. falciparum isolates analyzed, but 7.4% (95% CI: 2.8-15.4) lacked the exon 2 part of the pfhrp3 gene. CONCLUSIONS: Field isolates lacking either exon of the pfhrp2 gene are absent in this western part of South America. Despite its sensibility to detect P. vivax, the SD Malaria Ag test P.f/Pan® kit is a satisfying alternative to microscopy in remote health centers, where it is difficult to provide highly skilled microscopists and to maintain the necessary equipment

    Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants

    Get PDF
    It has come to our attention that approximately 35% of >100 published microarray datasets, where transcript levels were compared between two different strains, exhibit some form of chromosome-specific bias. While some of these arose from the use of strains whose aneuploidies were not known at the time, in a worrisome number of cases the recombinant strains have acquired additional aneuploidies that were not initially present in the parental strain. The aneuploidies often affected a different chromosome than the one harboring the insertion site. The affected strains originated from either CAI-4, RM1000, BWP17 or SN95 and were produced through a variety of strategies. These observations suggest that aneuploidies frequently occur during the production of recombinant strains and have an effect on global transcript profiles outside of the afflicted chromosome(s), thus raising the possibility of unintended phenotypic consequences. Thus, we propose that all Candida albicans mutants and strains should be tested for aneuploidy before being used in further studies. To this end, we describe a new rapid testing method, based on a multiplex quantitative PCR assay, that produces eight bands of distinct sizes from either the left or right arms of each C. albicans chromosome

    HTLV-1 propels thymic human T cell development in “human immune system” Rag2-/- IL-2R γc-/- Mice

    Get PDF
    Alteration of early haematopoietic development is thought to be responsible for the onset of immature leukemias and lymphomas. We have previously demonstrated that TaxHTLV-1 interferes with ß-selection, an important checkpoint of early thymopoiesis, indicating that human T-cell leukemia virus type 1 (HTLV-1) infection has the potential to perturb thymic human αβ T-cell development. To verify that inference and to clarify the impact of HTLV-1 infection on human T-cell development, we investigated the in vivo effects of HTLV-1 infection in a “Human Immune System” (HIS) Rag2-/-γc-/- mouse model. These mice were infected with HTLV-1, at a time when the three main subpopulations of human thymocytes have been detected. In all but two inoculated mice, the HTLV-1 provirus was found integrated in thymocytes; the proviral load increased with the length of the infection period. In the HTLV-1-infected mice we observed alterations in human T-cell development, the extent of which correlated with the proviral load. Thus, in the thymus of HTLV-1-infected HIS Rag2-/-γc-/- mice, mature single-positive (SP) CD4+ and CD8+ cells were most numerous, at the expense of immature and double-positive (DP) thymocytes. These SP cells also accumulated in the spleen. Human lymphocytes from thymus and spleen were activated, as shown by the expression of CD25: this activation was correlated with the presence of tax mRNA and with increased expression of NF-kB dependent genes such as bfl-1, an anti-apoptotic gene, in thymocytes. Finally, hepato-splenomegaly, lymphadenopathy and lymphoma/thymoma, in which Tax was detected, were observed in HTLV-1-infected mice, several months after HTLV-1 infection. These results demonstrate the potential of the HIS Rag2-/-γc-/- animal model to elucidate the initial steps of the leukemogenic process induced by HTLV-1

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Galig (un nouveau gène humain inducteur de la mort cellulaire)

    No full text
    Galig, gène interne au gène de la galectine-3, code deux protéines : la mitogaligine et la cytogaligine. Mon travail de thèse a montré que l'expression de galig conduit à une mort cellulaire présentant des marqueurs caractéristiques de l'apoptose. Ainsi, la co-expression de Bcl-XL, protéine anti-apoptotique, réduit significativement la libération de cytochrome c et la mort cellulaire. Cependant, certains caractères apoptotiques ne sont pas mis en évidence suggérant une nouvelle forme de mort cellulaire programmée. Des études de relation structure-fonction ont permis de délimiter le signal d'adressage mitochondrial en position interne dans la mitogaligine. Des anticorps anti-cytogaligine polyclonaux ont été développés puis utilisés en immunofluorescence et en western-blot. Un test de PCR quantitative a également été mis au point. Ces outils devraient permettre de quantifier l'expression du gène galig et la production des protéines in vivo dans différents échantillons de tissus humains.ORLEANS-BU Sciences (452342104) / SudocSudocFranceF

    Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model

    No full text
    International audienceThe heterozygous diploid genome of Candida albicans displays frequent genomic rearrangements, in particular loss-of-heterozygosity (LOH) events, which can be seen on all eight chromosomes and affect both laboratory and clinical strains. LOHs, which are often the consequence of DNA damage repair, can be observed upon stresses reminiscent of the host environment, and result in homozygous regions of various sizes depending on the molecular mechanisms at their origins. Recent studies have shed light on the biological importance of these frequent and ubiquitous LOH events in C. albicans. In diploid Saccharomyces cerevisiae, LOH facilitates the passage of recessive beneficial mutations through Haldane’s sieve, allowing rapid evolutionary adaptation. This also appears to be true in C. albicans, where the full potential of an adaptive mutation is often only observed upon LOH, as illustrated in the case of antifungal resistance and niche adaptation. To understand the genome-wide dynamics of LOH events in C. albicans, we constructed a collection of 15 strains, each one carrying a LOH reporter system on a different chromosome arm. This system involves the insertion of two fluorescent marker genes in a neutral genomic region on both homologs, allowing spontaneous LOH events to be detected by monitoring the loss of one of the fluorescent markers using flow cytometry. Using this collection, we observed significant LOH frequency differences between genomic loci in standard laboratory growth conditions; however, we further demonstrated that comparable heterogeneity was also observed for a given genomic locus between independent strains. Additionally, upon exposure to stress, three outcomes could be observed in C. albicans, where individual strains displayed increases, decreases, or no effect of stress in terms of LOH frequency. Our results argue against a general stress response triggering overall genome instability. Indeed, we showed that the heterogeneity of LOH frequency in C. albicans is present at various levels, inter-strain, intra-strain, and inter-chromosomes, suggesting that LOH events may occur stochastically within a cell, though the genetic background potentially impacts genome stability in terms of LOH throughout the genome in both basal and stress conditions. This heterogeneity in terms of genome stability may serve as an important adaptive strategy for the predominantly clonal human opportunistic pathogen C. albicans, by quickly generating a wide spectrum of genetic variation combinations potentially permitting subsistence in a rapidly evolving environment

    La femme chirurgien-dentiste enceinte : quelle activité au fauteuil ?

    No full text
    REIMS-BU Santé (514542104) / SudocSudocFranceF
    corecore