37 research outputs found

    The SmAP2 RNA binding motif in the 3'UTR affects mRNA stability in the crenarchaeum Sulfolobus solfataricus.

    No full text
    Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism in Pro- and Eukaryotes. In this study, a collection of 53 mRNAs that co-purified with Sulfolobus solfataricus (Sso) SmAP2 were surveyed for a specific RNA binding motif (RBM). SmAP2 was shown to bind with high affinity to the deduced consensus RNA binding motif (SmAP2-cRBM) in vitro. Residues in SmAP2 interacting with the SmAP2-cRBM were mapped by UV-induced crosslinking in combination with mass-spectrometry, and verified by mutational analyses. The RNA-binding site on SmAP2 includes a modified uracil binding pocket containing a unique threonine (T40) located on the L3 face and a second residue, K25, located in the pore. To study the function of the SmAP2-RBM in vivo, three authentic RBMs were inserted in the 3'UTR of a lacS reporter gene. The presence of the SmAP2-RBM in the reporter-constructs resulted in decreased LacS activity and reduced steady state levels of lacS mRNA. Moreover, the presence of the SmAP2-cRBM in and the replacement of the lacS 3'UTR with that of Sso2194 encompassing a SmAP2-RBM apparently impacted on the stability of the chimeric transcripts. These results are discussed in light of the function(s) of eukaryotic Lsm proteins in RNA turnover

    Divisible E-Cash from Constrained Pseudo-Random Functions

    Get PDF
    International audienceElectronic cash (e-cash) is the digital analogue of regular cash which aims at preservingusers’ privacy. Following Chaum’s seminal work, several new features were proposed for e-cash toaddress the practical issues of the original primitive. Among them,divisibilityhas proved very usefulto enable efficient storage and spendings. Unfortunately, it is also very difficult to achieve and, todate, quite a few constructions exist, all of them relying on complex mechanisms that can only beinstantiated in one specific setting. In addition security models are incomplete and proofs sometimeshand-wavy.In this work, we first provide a complete security model for divisible e-cash, and we study the linkswith constrained pseudo-random functions (PRFs), a primitive recently formalized by Boneh andWaters. We exhibit two frameworks of divisible e-cash systems from constrained PRFs achievingsome specific properties: either key homomorphism or delegability. We then formally prove theseframeworks, and address two main issues in previous constructions: two essential security notionswere either not considered at all or not fully proven. Indeed, we introduce the notion ofclearing,which should guarantee that only the recipient of a transaction should be able to do the deposit,and we show theexculpability, that should prevent an honest user to be falsely accused, was wrongin most proofs of the previous constructions. Some can easily be repaired, but this is not the casefor most complex settings such as constructions in the standard model. Consequently, we providethe first construction secure in the standard model, as a direct instantiation of our framework

    Instrumental drift in untargeted metabolomics: optimizing data quality with intrastudy QC samples

    No full text
    Untargeted metabolomics is an important tool in studying health and disease and is employed in fields such as biomarker discovery and drug development, as well as precision medicine. Although significant technical advances were made in the field of mass-spectrometry driven metabolomics, instrumental drifts, such as fluctuations in retention time and signal intensity, remain a challenge, particularly in large untargeted metabolomics studies. Therefore, it is crucial to consider these variations during data processing to ensure high-quality data. Here, we will provide recommendations for an optimal data processing workflow using intrastudy quality control (QC) samples that identifies errors resulting from instrumental drifts, such as shifts in retention time and metabolite intensities. Furthermore, we provide an in-depth comparison of the performance of three popular batch-effect correction methods of different complexity. By using different evaluation metrics based on QC samples and a machine learning approach based on biological samples, the performance of the batch-effect correction methods were evaluated. Here, the method TIGER demonstrated the overall best performance by reducing the relative standard deviation of the QCs and dispersion-ratio the most, as well as demonstrating the highest area under the receiver operating characteristic with three different probabilistic classifiers (Logistic regression, Random Forest, and Support Vector Machine). In summary, our recommendations will help to generate high-quality data that are suitable for further downstream processing, leading to more accurate and meaningful insights into the underlying biological processes

    Modification of translation factor aIF5A from Sulfolobus solfataricus

    No full text
    Eukaryotic eIF5A and its bacterial orthologue EF-P are translation elongation factors whose task is to rescue ribosomes from stalling during the synthesis of proteins bearing particular sequences such as polyproline stretches. Both proteins are characterized by unique post-translational modifications, hypusination and lysinylation, respectively, which are essential for their function. An orthologue is present in all Archaea but its function is poorly understood. Here, we show that aIF5A of the crenarchaeum Sulfolobus solfataricus is hypusinated and forms a stable complex with deoxyhypusine synthase, the first enzyme of the hypusination pathway. The recombinant enzyme is able to modify its substrate in vitro resulting in deoxyhypusinated aIF5A. Moreover, with the aim to identify the enzyme involved in the second modification step, i.e. hypusination, a set of proteins interacting with aIF5A was identified
    corecore