2 research outputs found

    Mass and motion of globulettes in the Rosette Nebula

    Get PDF
    We have investigated tiny molecular clumps in the Rosette Nebula. Radio observations were made of molecular line emission from 16 globulettes identified in a previous optical survey. In addtion, we collected images in the NIR broad-band JHKs and narrow-band Paschen beta and H2. Ten objects, for which we collected information from several transitions in 12CO and 13CO were modelled using a spherically symmetric model. The best fit to observed line ratios and intensities was obtained by assuming a model composed of a cool and dense centre and warm and dense surface layer. The average masses derived range from about 50 to 500 Jupiter masses, which is similar to earlier estimates based on extinction measures. The globulettes selected are dense, with very thin layers of fluorescent H2 emission. The NIR data shows that several globulettes are very opaque and contain dense cores. Because of the high density encountered already at the surface, the rims become thin, as evidenced by our P beta images. We conclude that the entire complex of shells, elephant trunks, and globulettes in the northern part of the nebula is expanding with nearly the same velocity of ~22 km/s, and with a very small spread in velocity among the globulettes. Some globulettes are in the process of detaching from elephant trunks and shells, while other more isolated objects must have detached long ago and are lagging behind in the general expansion of the molecular shell. The suggestion that some globulettes might collapse to form planetary-mass objects or brown dwarfs is strengthened by our finding of dense cores in several objects.Comment: 15 pages, 15 figures Astronomy and Astrophysics 201
    corecore