14 research outputs found

    Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe

    Get PDF
    Soil quality is defined as the capacity of the soil to perform multiple functions, and can be assessed by measuring soil chemical, physical and biological parameters. Among soil parameters, labile organic carbon is considered to have a primary role in many soil functions related to productivity and environmental resilience. Our study aimed at assessing the suitability of different labile carbon fractions, namely dissolved organic carbon (DOC), hydrophilic DOC (Hy-DOC), permanganate oxidizable carbon (POXC, also referred to as Active Carbon), hot water extractable carbon (HWEC) and particulate organic matter carbon (POMC) as soil quality indicators in agricultural systems. To do so, we tested their sensitivity to two agricultural management factors (tillage and organic matter input) in 10 European long-term field experiments (LTEs), and we assessed the correlation of the different labile carbon fractions with physical, chemical and biological soil quality indicators linked to soil functions. We found that reduced tillage and high organic matter input increase concentrations of labile carbon fractions in soil compared to conventional tillage and low organic matter addition, respectively. POXC and POMC were the most sensitive fractions to both tillage and fertilization across the 10 European LTEs. In addition, POXC was the labile carbon fraction most positively correlated with soil chemical (total organic carbon, total nitrogen, and cation exchange capacity), physical (water stable aggregates, water holding capacity, bulk density) and biological soil quality indicators (microbial biomass carbon and nitrogen, and soil respiration). We conclude that POXC represents a labile carbon fraction sensitive to soil management and that is the most informative about total soil organic matter, nutrients, soil structure, and microbial pools and activity, parameters commonly used as indicators of various soil functions, such as C sequestration, nutrient cycling, soil structure formation and soil as a habitat for biodiversity. Moreover, POXC measurement is relatively cheap, fast and easy. Therefore, we suggest measuring POXC as the labile carbon fraction in soil quality assessment schemes in addition to other valuable soil quality indicators.</p

    Vorrichtung und Verfahren zur Karbonisierung oder Graphitisierung von Kohlenstoff enthaltenden Fasern oder einem mit Kohlenstoff enthaltenden Fasern gebildeten textilen Gebilde

    No full text
    The invention relates to a device for the carbonization or graphitization of carbon-containing fibers, in which fibers are guided through a continuous furnace in which partial pre-carbonization takes place. At least one device which comprises a heating zone and through which the fibers are guided following the achieved partial pre-carbonization is arranged within the continuous furnace or immediately after the continuous furnace. The at least one heating zone is formed by at least one pair of rollers or at least one pair of heating elements which are in electrically conductive contact with fibers, electrical resistance heating of the fibers takes place as a result of the connection of a roller or a heating element to a pole of an electric voltage source and the connection of the respective other roller or the respective other heating element of the pair of rollers or pair of heating elements to the respective other pole of the electric voltage source, and the rollers of a pair of rollers or the heating elements of a pair of heating elements are arranged at a distance from one another, which results in a further carbonization of the fibers

    New solar selective coating based on carbon nanotubes

    No full text
    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems

    Formation of SiC nanoparticles in an atmospheric microwave plasma

    No full text
    We describe the formation of SiC nanopowder using an atmospheric argon microwave plasma with tetramethylsilane (TMS) as precursor. The impact of several process conditions on the particle size of the product is experimentally investigated. Particles with sizes ranging from 7 nm to about 20 nm according to BET and XRD measurements are produced. The dependency of the particle size on the process parameters is evaluated statistically and explained with growth-rate equations derived from the theory of Ostwald ripening. The results show that the particle size is mainly influenced by the concentration of the precursor material in the plasma

    Combination of zinc oxide and antimony doped tin oxide nanocoatings for glazing application

    No full text
    Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines

    Improving component cleanliness during laser remote ablation processes with high-power lasers by optimized emission blower and suction strategies

    No full text
    Laser remote processing with high-performance laser sources enables materials such as metals or fiber composites to be cut, welded or ablated flexibly and quickly. All these manufacturing processes produce process and material specific particulate as well as gaseous emissions. This must be recorded quantitatively and qualitatively in order to implement appropriate protective measures with regard to occupational health and safety as well as to minimize the crosscontamination of the component to be treated. Ideally, an additional cleaning step should be avoided by optimizing the arrangement of the process suction and blower. Particle distributions as well as gas phase analyses during the remote ablation process were recorded during ablation tests on metals or carbon-based composites. The structure quality and the contamination of the sample surface after laser material processing as well as after the additional cleaning process were determined. Subsequently, the samples were thermally joined to evaluate the influences

    Corrigendum to “Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe”

    Get PDF
    Corrigendum to “Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe” [Ecol. Indic. 99 (2019) 38–50

    Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe

    No full text
    Soil quality is defined as the capacity of the soil to perform multiple functions, and can be assessed by measuring soil chemical, physical and biological parameters. Among soil parameters, labile organic carbon is considered to have a primary role in many soil functions related to productivity and environmental resilience. Our study aimed at assessing the suitability of different labile carbon fractions, namely dissolved organic carbon (DOC), hydrophilic DOC (Hy-DOC), permanganate oxidizable carbon (POXC, also referred to as Active Carbon), hot water extractable carbon (HWEC) and particulate organic matter carbon (POMC) as soil quality indicators in agricultural systems. To do so, we tested their sensitivity to two agricultural management factors (tillage and organic matter input) in 10 European long-term field experiments (LTEs), and we assessed the correlation of the different labile carbon fractions with physical, chemical and biological soil quality indicators linked to soil functions. We found that reduced tillage and high organic matter input increase concentrations of labile carbon fractions in soil compared to conventional tillage and low organic matter addition, respectively. POXC and POMC were the most sensitive fractions to both tillage and fertilization across the 10 European LTEs. In addition, POXC was the labile carbon fraction most positively correlated with soil chemical (total organic carbon, total nitrogen, and cation exchange capacity), physical (water stable aggregates, water holding capacity, bulk density) and biological soil quality indicators (microbial biomass carbon and nitrogen, and soil respiration). We conclude that POXC represents a labile carbon fraction sensitive to soil management and that is the most informative about total soil organic matter, nutrients, soil structure, and microbial pools and activity, parameters commonly used as indicators of various soil functions, such as C sequestration, nutrient cycling, soil structure formation and soil as a habitat for biodiversity. Moreover, POXC measurement is relatively cheap, fast and easy. Therefore, we suggest measuring POXC as the labile carbon fraction in soil quality assessment schemes in addition to other valuable soil quality indicators
    corecore