8 research outputs found

    Oxygen diffusion in Bi2O3-doped ZnO.

    No full text
    In order to clarify the influence of Bi-doping on oxygen diffusion in ZnO, the bulk and grain boundary oxygen diffusion coefficients were measured in Bi2O3-doped ZnO polycrystals by means of the gas-solid exchange method using the isotope 18O as the oxygen tracer. The experiments were performed on ZnO sintered samples containing 0.1, 0.3 and 0.5 mol% Bi2O3. The diffusion annealings were performed at 942, 1000 and 1092 °C, in an Ar+18O2 atmosphere under an oxygen partial pressure of 0.2 atm. After the diffusion annealings, the 18O diffusion profiles were established by secondary ion mass spectrometry (SIMS). The results show an increase in the oxygen diffusion in the Bi2O3-doped ZnO, when compared to the oxygen diffusion in the undoped ZnO polycrystal under the same experimental conditions, both in bulk and in grain-boundaries. Moreover, it was observed that the higher the Bi2O3 concentration, the higher the oxygen diffusion. These results suggest that the incorporation of Bi2O3 increases the interstitial oxygen concentration which agrees with an interstitial diffusion mechanism both in bulk and in grain-boundaries

    High density of defoliated tomato plants in protected cultivation and its effects on development of trusses and fruits Alta densidade com desfolhamento de plantas de tomateiro em cultivo protegido e seus efeitos sobre o desenvolvimento de inflorescências e frutos

    No full text
    Tomato fruit setting on high density defoliated tomato plants with similar leaf area index was determined in three environmental conditions, inside polyethylene tunnels. Experiment 1 was carried out in autumn when average solar radiation received by the crop was 8.0 MJ m-2 day-1. Average external temperature was 18.1&ordm;C. Experiments 2 and 3 were conducted in spring, when average external temperature was 19.7&ordm;C. In experiment 2, average solar radiation received by the crop was 12.4 MJ m-2 day-1, whereas in experiment 3 it was reduced to 5.9 MJ m-2 day-1 by a 52% shading net. Plants were grown in bags, spaced 1.0 m between row and 0.3 m within row bags distance, using 5.5 L of a commercial substrate. Nutrients and water were supplied by means of a nutrient solution, delivered daily in order to replace volumes lost by transpiration. Treatments consisted of one (T1), two (T2) and three (T3) plants per bag, leading to plant densities of 3.3, 6.7 and 10 plants m-2, respectively. In T1, three leaves per sympod were kept, with a ratio of 3:1 between number of leaves and inflorescences per sympod. In T2, two and one leaf was kept respectively on two consecutive sympods, alternatively on both plants. The ratio between number of leaves and inflorescences was 3:2. In T3, with three plants per bag, only one leaf per sympod was kept on each plant. The ratio between number of leaves and inflorescences was 3:3. In all experiments, the number of trusses per area in T2 and T3 was two and three times higher than in T1, respectively. The number of fruits per unit ground area was lower in T1 plants and similar in T2 and T3 plants in the first experiment, whereas in the second and third experiments similar values were observed among treatments. Results indicated that tomato plants adjust the number of fruits, and exceeding flowers are aborted. The use of a plant density of 6.7 plants m-2 combined with a 3:2 ratio between number of leaves and inflorescences per unit ground area seems to be the upper limit in maximizing the number of set fruits of this crop.<br>O número de frutos em plantas de tomateiro cultivadas em alta densidade e com índice de área foliar similar mantido através de desfolhamento foi determinado em três condições ambientais, no interior de túneis de polietileno. O experimento 1 foi conduzido no outono, com radiação solar média recebida pela cultura de 8,0 MJ m-2 dia-1 e temperatura média exterior de 18,1&ordm;C. Os experimentos 2 e 3 foram conduzidos na primavera, com temperatura média exterior de 19,7&ordm;C. No experimento 2, a radiação solar média recebida pela cultura foi de 12,4 MJ m-2 dia-1, enquanto no experimento 3 foi reduzida para 5,9 MJ m-2 dia-1 por meio de uma tela com 52% de sombreamento. As plantas foram cultivadas em sacolas, com 1,0 m entre fileiras e 0,3 m entre sacolas, enchidas com 5,5 L de substrato comercial. Nutrientes e água foram fornecidos via solução nutritiva, de forma a repor os volumes perdidos pela transpiração. Os tratamentos consistiram de uma (T1), duas (T2) e três (T3) plantas por sacola, correspondendo a densidades de 3,3; 6,7 e 10 plantas m-2, respectivamente. Em T1, três folhas por simpódio foram mantidas, com uma proporção de 3:1 entre o número de folhas e de inflorescências, em cada simpódio. Em T2, duas e uma folha foram mantidas respectivamente em dois simpódios consecutivos, alternativamente em ambas as plantas da sacola. A relação entre o número de folhas e de inflorescências foi de 3:2. Em T3, com três plantas por sacola, somente uma folha por simpódio foi mantida, com uma relação de 3:3. Em todos os experimentos, o número de inflorescências por unidade de área em T2 e T3 foi duas e três vezes maior que em T1, respectivamente. O número de frutos fixados por área de solo foi menor em T1 e similar em T2 e T3 no primeiro experimento, enquanto no segundo e terceiro experimentos valores similares foram observados entre os tratamentos. Os resultados indicaram que as plantas de tomateiro ajustam o número de frutos fixados e as flores excedentes são abortadas. Uma densidade de 6,7 plantas m-2 combinada com uma proporção de 3:2 entre o número de folhas e de inflorescências por unidade de área de solo é apontada como a mais indicada para maximizar a fixação de frutos da cultura

    Crescimento, desenvolvimento e produtividade do tomateiro cultivado em substrato com três concentrações de nitrogênio na solução nutritiva Growth, development and yield of tomato plants grown in substrate under three nitrogen concentrations of the nutrient solution

    No full text
    Determinou-se o efeito de três concentrações de N da solução nutritiva sobre o crescimento e produtividade do tomateiro cultivado em substrato, no outono e na primavera. Os experimentos foram conduzidos no interior de um túnel alto de polietileno, no Departamento de Fitotecnia da UFSM, empregando-se o híbrido Monte Carlo. As semeaduras foram feitas em 8 de fevereiro e 5 de julho de 2002 e o plantio no interior do túnel aos 36 e 40 dias após a semeadura, no outono e na primavera, respectivamente. Foi empregada uma sacola para cada planta, contendo 5,5dm³ de substrato comercial (Plantmax®), com uma planta por sacola e densidade de 3,3 plantas m-2. Os nutrientes foram fornecidos através de uma solução nutritiva contendo, em mmol L-1: 5,5 de KNO3; 1,3 de KH2PO4; 2,75 de Ca(NO3)2; 0,75 de MgSO4, com adição de ferro quelatizado e micronutrientes. O tratamento T2 foi igual a solução de referência, com 11,0 mmolN L-1. No tratamento T1, a concentração de nitrogênio da solução nutritiva foi reduzida para 5,5mmolN L-1, enquanto em T3 foi aumentada para 15,16mmolN L-1. O delineamento experimental empregado foi o inteiramente casualizado, com quatro repetições e 15 plantas por parcela. Foi feita análise do crescimento e desenvolvimento mediante coleta de plantas aos 33, 48, 55, 62, 69, 76 e 83 dias após o plantio (DAP), no outono, e aos 55, 62, 69, 78, 85 e 92 DAP, na primavera. A produtividade foi medida através da massa verde de frutos. O número de folhas foi inferior nas plantas de T3, no outono e na primavera, enquanto o número de frutos foi mais elevado nas plantas de T1 no cultivo de primavera. A massa seca de frutos no outono evoluiu sem diferenças significativas entre os três tratamentos. Na primavera, essa variável foi inferior nas plantas de T3 ao final do experimento. A produtividade de frutos atingiu valores médios de 5,4; 5,5 e 5,2kg m-2 no outono e de 6,7; 7,7 e 5,8kg m-2 na primavera, respectivamente para T1, T2 e T3, com produtividade máxima estimada de 7,8kg m-2 na dose de 9,3mmolN L-1. Concluiu-se que a concentração de N na solução nutritiva afetou o crescimento e a produtividade da cultura do tomateiro em substrato, porém não foi observada resposta similar nos dois ciclos de cultivo.<br>The effect of three N concentrations of the nutrient solution on growth and yield of tomato plants grown in substrate was determined in autumn and spring growing periods. Two experiments were conducted inside a polyethylene tunnel, at Departamento de Fitotecnia - UFSM, using the hybrid Monte Carlo. Sowing was made on February 8 and on July 5, 2002, and planting inside the tunnel 36 and 40 days later, in autumn and spring, respectively. Plants were grown in plastic bags filled with 5.5dm³ of commercial substrate (Plantmax®), with one plant per bag and a plant density of 3.3 plants m-2. Nutrients were supplied to plants by a complete nutrient solution, with the following composition, in mmol L-1: 5.5 of KNO3; 1.3 of KH2PO4; 2.75 of Ca(NO3)2; 0.75 of MgSO4, with iron chelate and micronutrients. The treatment T2 was the nutrient solution described above, with 11.0mmolN L-1. For treatment T1, the N concentration of the nutrient solution was reduced to 5.5mmolN L-1, whereas for T3 it was increased to 15.16mmolN L-1. A randomised experimental design was used, with four replications and 15 plants per plot. Plants were harvested at 33, 48, 55, 62, 69, 76 and 83 days after planting (DAP) in autumn, and at 55, 62, 69, 78, 85 and 92 DAP in spring, to measure plant growth and development. Crop yield was determined by fresh weight of fruits. The number of leaves was lower on T3 plants in autumn and spring, whereas the number of fruits was higher on T1 plants in spring. The dynamics of fruit dry mass accumulation did not show significant differences among treatments in autumn. In spring, the lowest value of this variable was recorded on T3 plants. Mean values of fresh fruit weight reached 5.4; 5.5 and 5.2kg m 2 in autumn, and 6.7; 7.7 and 5.8kg m-2 in spring, for T1 T2 and T3, respectively, fitting well a polynomial model with estimated maximum fruit yield of 7.8kg m-2 at a N concentration of 9.3mmolN L-1. It was concluded that N concentration of the nutrient solution affected the growth and yield of the tomato crop, but a similar effect was not observed in autumn and spring growing periods
    corecore