38,868 research outputs found
Performance of a First-Level Muon Trigger with High Momentum Resolution Based on the ATLAS MDT Chambers for HL-LHC
Highly selective first-level triggers are essential to exploit the full
physics potential of the ATLAS experiment at High-Luminosity LHC (HL-LHC). The
concept for a new muon trigger stage using the precision monitored drift tube
(MDT) chambers to significantly improve the selectivity of the first-level muon
trigger is presented. It is based on fast track reconstruction in all three
layers of the existing MDT chambers, made possible by an extension of the
first-level trigger latency to six microseconds and a new MDT read-out
electronics required for the higher overall trigger rates at the HL-LHC. Data
from -collisions at is used to study the
minimal muon transverse momentum resolution that can be obtained using the MDT
precision chambers, and to estimate the resolution and efficiency of the
MDT-based trigger. A resolution of better than is found in all sectors
under study. With this resolution, a first-level trigger with a threshold of
becomes fully efficient for muons with a transverse momentum
above in the barrel, and above in the
end-cap region.Comment: 6 pages, 11 figures; conference proceedings for IEEE NSS & MIC
conference, San Diego, 201
On Robustness of Massive MIMO Systems Against Passive Eavesdropping under Antenna Selection
In massive MIMO wiretap settings, the base station can significantly suppress
eavesdroppers by narrow beamforming toward legitimate terminals. Numerical
investigations show that by this approach, secrecy is obtained at no
significant cost. We call this property of massive MIMO systems `secrecy for
free' and show that it not only holds when all the transmit antennas at the
base station are employed, but also when only a single antenna is set active.
Using linear precoding, the information leakage to the eavesdroppers can be
sufficiently diminished, when the total number of available transmit antennas
at the base station grows large, even when only a fixed number of them are
selected. This result indicates that passive eavesdropping has no significant
impact on massive MIMO systems, regardless of the number of active transmit
antennas.Comment: 7 pages, 2 figures; To be presented in IEEE Global Communications
Conference (Globecom) 2018 in Abu Dhabi, UA
Optimal Number of Transmit Antennas for Secrecy Enhancement in Massive MIMOME Channels
This paper studies the impact of transmit antenna selection on the secrecy
performance of massive MIMO wiretap channels. We consider a scenario in which a
multi-antenna transmitter selects a subset of transmit antennas with the
strongest channel gains. Confidential messages are then transmitted to a
multi-antenna legitimate receiver while the channel is being overheard by a
multi-antenna eavesdropper. For this setup, we approximate the distribution of
the instantaneous secrecy rate in the large-system limit. The approximation
enables us to investigate the optimal number of selected antennas which
maximizes the asymptotic secrecy throughput of the system. We show that
increasing the number of selected antennas enhances the secrecy performance of
the system up to some optimal value, and that further growth in the number of
selected antennas has a destructive effect. Using the large-system
approximation, we obtain the optimal number of selected antennas analytically
for various scenarios. Our numerical investigations show an accurate match
between simulations and the analytic results even for not so large dimensions.Comment: 6 pages, 4 figures, IEEE GLOBECOM 201
Treponema denticola in Disseminating Endodontic Infections
Treponema denticola is a consensus periodontal pathogen that has recently been associated with endodontic pathology. In this study, the effect of mono-infection of the dental pulp with T. denticola and with polymicrobial “red-complex” organisms (RC) (Porphyromonas gingivalis, Tannerella forsythia, and T. denticola) in inducing disseminating infections in wild-type (WT) and severe-combined-immunodeficiency (SCID) mice was analyzed. After 21 days, a high incidence (5/10) of orofacial abscesses was observed in SCID mice mono-infected with T. denticola, whereas abscesses were rare in SCID mice infected with the red-complex organisms or in wildtype mice. Splenomegaly was present in all groups, but only mono-infected SCID mice had weight loss. T. denticola DNA was detected in the spleen, heart, and brain of mono-infected SCID mice and in the spleen from mono-infected wild-type mice, which also had more periapical bone resorption. The results indicate that T. denticola has high pathogenicity, including dissemination to distant organs, further substantiating its potential importance in oral and linked systemic conditions
- …