138 research outputs found

    Continuous-Time Monte Carlo study of the pseudogap Bose-Fermi Kondo model

    Full text link
    We study the pseudogap Bose-Fermi Anderson model with a continuous-time quantum Monte Carlo (CT-QMC) method. We discuss some delicate aspects of the transformation from this model to the Bose-Fermi Kondo model. We show that the CT-QMC method can be used at sufficiently low temperatures to access the quantum critical properties of these models.Comment: SCES 2010 Proceeding

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    A Local Moment Approach to magnetic impurities in gapless Fermi systems

    Full text link
    A local moment approach is developed for the single-particle excitations of a symmetric Anderson impurity model (AIM), with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Local moments are introduced explicitly from the outset, and a two-self-energy description is employed in which the single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime. While the primary emphasis is on single particle dynamics, the quantum phase transition between strong coupling (SC) and (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained. Results for both single-particle spectra and SC/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies. A number of further testable predictions are made; in particular, for r < 1/2, spectra characteristic of the SC state are predicted to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are moreover recovered smoothly from the limit r -> 0, where the resultant description of single-particle dynamics includes recovery of Doniach-Sunjic tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed Matte

    Dynamics of capacitively coupled double quantum dots

    Full text link
    We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime; and then towards and through the quantum phase transition to a charge-ordered (CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.Comment: 14 pages, 6 figure

    Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis

    Full text link
    The spin-boson model has nontrivial quantum phase transitions at zero temperature induced by the spin-boson coupling. The bosonic numerical renormalization group (BNRG) study of the critical exponents β\beta and δ\delta of this model is hampered by the effects of boson Hilbert space truncation. Here we analyze the mean-field spin boson model to figure out the scaling behavior of magnetization under the cutoff of boson states NbN_{b}. We find that the truncation is a strong relevant operator with respect to the Gaussian fixed point in 0<s<1/20<s<1/2 and incurs the deviation of the exponents from the classical values. The magnetization at zero bias near the critical point is described by a generalized homogeneous function (GHF) of two variables τ=ααc\tau=\alpha-\alpha_{c} and x=1/Nbx=1/N_{b}. The universal function has a double-power form and the powers are obtained analytically as well as numerically. Similarly, m(α=αc)m(\alpha=\alpha_{c}) is found to be a GHF of ϵ\epsilon and xx. In the regime s>1/2s>1/2, the truncation produces no effect. Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure

    Dynamics and transport properties of heavy fermions: theory

    Full text link
    The paramagnetic phase of heavy fermion systems is investigated, using a non-perturbative local moment approach to the asymmetric periodic Anderson model within the framework of dynamical mean field theory. The natural focus is on the strong coupling Kondo-lattice regime wherein single-particle spectra, scattering rates, dc transport and optics are found to exhibit w/w_L,T/w_L scaling in terms of a single underlying low-energy coherence scale w_L. Dynamics/transport on all relevant (w,T)-scales are encompassed, from the low-energy behaviour characteristic of the lattice coherent Fermi liquid, through incoherent effective single-impurity physics likewise found to arise in the universal scaling regime, to non-universal high-energy scales; and which description in turn enables viable quantitative comparison to experiment.Comment: 27 pages, 12 figure

    Spectral scaling and quantum critical behaviour in the pseudogap Anderson model

    Full text link
    The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.Comment: 7 pages, 2 figure

    Numerical Renormalization Group for Impurity Quantum Phase Transitions: Structure of Critical Fixed Points

    Full text link
    The numerical renormalization group method is used to investigate zero temperature phase transitions in quantum impurity systems, in particular in the particle-hole symmetric soft-gap Anderson model. The model displays two stable phases whose fixed points can be built up of non-interacting single-particle states. In contrast, the quantum phase transitions turn out to be described by interacting fixed points, and their excitations cannot be described in terms of free particles. We show that the structure of the many-body spectrum of these critical fixed points can be understood using renormalized perturbation theory close to certain values of the bath exponents which play the role of critical dimensions. Contact is made with perturbative renormalization group calculations for the soft-gap Anderson and Kondo models. A complete description of the quantum critical many-particle spectra is achieved using suitable marginal operators; technically this can be understood as epsilon-expansion for full many-body spectra.Comment: 14 pages, 12 figure

    Magnetoresistance in paramagnetic heavy fermion metals

    Full text link
    A theoretical study of magnetic field (h) effects on single-particle spectra and transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale \om_L, which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single impurity physics occurs,increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two with the splitting being proportional to the field itself. For h\geq 0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at T\gtrsim \om_L by field-induced suppression of spin-flip scattering and at T\lesssim \om_L through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB6_6 yields good agreement.Comment: 17 pages, 8 figure

    Interaction effects in mixed-valent Kondo insulators

    Full text link
    We study theoretically the class of mixed-valent Kondo insulators, employing a recently developed local moment approach to heavy Fermion systems using the asymmetric periodic Anderson model (PAM). Novel features in spectra and transport, observable experimentally but lying outside the scope of the symmetric PAM or the Kondo lattice model, emerge naturally within the present theory. We argue in particular that a shoulder-like feature in the optical conductivity, that is distinct from the usual mid-infrared or direct gap peak and has been observed experimentally in mixed-valent compounds such as CeOs4Sb12 and YbAl3, is of intrinsic origin. Detailed comparison is made between the resultant theory and transport/optical experiments on the filled-skutterudite compound CeOs4Sb12, and good agreement is obtained.Comment: 14 pages, 7 figure
    corecore