369 research outputs found

    Study of validity of risk of malignancy index in perimenopausal women with ovarian mass in a tertiary care hospital in India

    Get PDF
    Background: Ovarian carcinoma is a silent killer because it presents in advanced stage. In India, it ranks third after carcinoma cervix and breast. Incidence of ovarian cancer is 5.4-8.0 per 100,000 in India. Various versions of risk of malignancy index have been studied to show its validity in different settings. We have studied third version of risk of malignancy index in a resource poor setting in India.Methods: In this prospective observational study 74 perimenopausal and postmenopausal women with ovarian mass were recruited. Menopausal score (M), Ultrasonography score (U) and CA-125 are components of Risk of Malignancy Index 3. Patients underwent preoperative ultrasonography and CA-125 level was assessed. Scores of M 1-3, U 1-3 and absolute value of CA-125 was multiplied. This product was value of Risk of Malignancy Index 3. If it is less than 250 it suggests absence of malignancy and more than 250 strongly suggests malignancy. Results were confirmed by histopathology.Results: Fifty six percent women were cancer positive. Ovarian malignancy was more common in postmenopausal age group. Ultrasonography and CA-125 had high sensitivity of 90% but poor specificity. Risk of malignancy index 3 had a sensitivity, specificity, positive predictive value and negative predictive value of 90%, 91%, 78% and 96% respectively at a cut off value of 250.Conclusions: Risk of malignancy index was concluded to be a multimodal approach with better diagnostic scoring index in preoperative stage in women of ovarian masses. It is simple and easily applicable clinical tool in resource poor setting

    Electrostatic- and Parallel Magnetic Field- Tuned Two Dimensional Superconductor-Insulator Transitions

    Full text link
    The 2D superconductor-insulator transition in disordered ultrathin amorphous bismuth films has been tuned both by electrostatic electron doping using the electric field effect and by the application of parallel magnetic fields. Electrostatic doping was carried out in both zero and nonzero magnetic fields, and magnetic tuning was conducted at multiple strengths of electrostatically induced superconductivity. The transitions were analyzed using finite size scaling with critical exponent products nu*z = 0.65-0.7. The parallel critical magnetic field increased with electron transfer as (dn_c-dn)^0.33, where dn is the electron transfer and dn_c is its critical value, and the critical resistance decreased linearly with dn. However at lower temperatures, in the insulating regime, the resistance became larger than expected from extrapolation of its temperature dependence at higher temperatures, and scaling failed. These observations imply that although the electrostatic- and parallel magnetic field- tuned superconductor-insulator transitions would appear to belong to the same universality class and to be delineated by a robust phase boundary that can be crossed either by tuning electron density or magnetic field, in the case of the field-tuned transition at the lowest temperatures, some different type of physical behavior turns on in the insulating regime.Comment: About 11 pages, with 14 figures. To be submitted to Phys Rev

    STRENGTHENING MATERNAL AND CHILD PROGRAM IN INDONESIA THROUGH INTEGRATED PLANNING AND BUDGETING

    Get PDF
    Background: Indonesia applies decentralization policy in health sector. However, there are Health Minimum Service Standards (HMSS) that must be met at provincial and district level. In district level, there are 12 indicators that must be achieved include of maternal and child health with the coverage must be 100%. Nevertheless, there are various problems in achieving HMSS both quantity and quality aspect. This study aimed to determine the problems that were happened and determine alternative solutions in the implementation of HMSS especially in maternal and child sector.Methods: This research was done in three steps. The first step was conducted by Focus Group Discussion (FGD) with participant from many stakeholders in Central Java and Yogyakarta. This step aims to identify problems in the implementation of HMSS and develop the alternative solution. Second stage was developing the conceptual framework.Results: Based on the research, there are many problems in quantitative and qualitative aspects related to healthcare services. Program planning and budgeting is the main key to achievement HMSS. In second and third steps, an integrated planning and budgeting framework between multisector was obtained including problem identification, problem cause analysis, multisector identification, setting solutions and programs, planning and budgeting, and monitoring and evaluation. So that, there were no overlapping programs, less optimal, and lack of supervision and guidance.Conclusions: Integrated planning and budgeting was alternative solution to solve the implementation problem in HMSS especially in maternal and child aspect. However, strong commitment and monitoring was needed between stakeholder

    Superconductor-Insulator Transition in a Disordered Electronic System

    Full text link
    We study an electronic model of a 2D superconductor with onsite randomness using Quantum Monte Carlo simulations. The superfluid density is used to track the destruction of superconductivity in the ground state with increasing disorder. The non-superconducting state is identified as an insulator from the temperature dependence of its d.c. resistivity. The value of σdc\sigma_{\rm dc} at the superconductor-insulator transition appears to be non-universal.Comment: PostScript, 4 pages, figures include

    Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs

    Get PDF
    Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p\u3c0.05). Conclusions: Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Effect of Glycerol on the Functional Properties of Chitosan/PEO Films

    Get PDF
    Polymer blending is a productive technique for granting attractive properties in polymeric materials which are advantageous for the packaging industry. In the present investigation, blended films of chitosan/poly (ethylene oxide) (PEO) were synthesized in different proportions of weight in the presence and absence of glycerol. Presence of distinctive peaks of chitosan and PEO at 1656 cm−1 and 843 cm−1 separately confirms the blending of chitosan/PEO. Simultaneously widening of peaks at 3380 cm−1 and 1656 cm−1 can be credited to the inter-molecular hydrogen bonding between chitosan/PEO films which thereby support blending. The physico-mechanical, barrier, optical, thermal, surface morphology and biodegradation properties of chitosan and PEO blended films with and without glycerol were estimated. It was seen that the tensile strength of the blended films diminished. Haze values of chitosan/PEO blended films with glycerol (20%) diminished from 17.7% for C100 to 3.7% for pure PEO bringing about an increase in transparency of the films that could be due to the plasticized effect. The outcomes indicate that in the presence of glycerol (20%), there is an increment of the elongation at break by more than 150%, inferring that these chitosan/PEO films could be suitably used in elastic and stretchable packaging. These films with high WVTR values can be utilized for fresh produce to control moisture evaporation and upgrades their shelf life. These films biodegrade or disintegrate within five weeks

    Effect of educational intervention in reducing exposure to second hand tobacco smoke among 12-year-old children as determined by their salivary cotinine levels and knowledge, attitude and behavior - a randomized controlled trial

    Get PDF
    BackgroundTobacco use is one of the most important public health concerns, with approximately 8.7 million tobacco-related deaths each year, primarily in low- and middle-income countries. Even more concerning is the fact that 1.3 million of these deaths are seen in nonsmokers, including babies and children. This study was performed to determine whether a school-based “tobacco-free” educational intervention program among 12-year-old children would be effective in reducing their exposure to second-hand tobacco smoke (SHS) by improving their knowledge, attitude and behavior post intervention and estimating salivary cotinine levels as markers of SHS exposure.Materials and methodA randomized controlled trial was performed by a cluster random sampling technique, with 30 participants each in the experimental and control arms. A knowledge, attitude, avoidance behavior and self-efficacy of avoidance questionnaire was administered, followed by estimation of salivary cotinine levels. The experimental arm received the “tobacco-free” intervention, which comprised a 40-min health education session, with the first follow-up at 15 days and the second at 30 days after the intervention. After the intervention, the questionnaire was readministered, followed by re-estimation of salivary cotinine levels.ResultsOne month after the intervention, the number of participants who had a smoker who lived with them and the number of people who smoked inside the house were reduced in the experimental group compared to the control group. In the knowledge domain and the attitude domain, 80% and 60% of the items showed a statistically significant improvement in the experimental group compared to the control group. In the avoidance behavior domain and the Self-Efficacy of Avoidance Domain, all the items showed improvement in the experimental group compared to the control group. When the mean salivary cotinine levels were compared pre- and postintervention, it was found that although the mean postintervention salivary cotinine levels increased in both the experimental and control groups, the increase was less in the experimental group than in the control group.ConclusionThe present study has been shown to be effective in improving the knowledge, attitude and avoidance behavior of adolescents toward exposure to secondhand smoke

    Channeling macrophage polarization by rocaglates increases macrophage resistance to Mycobacterium tuberculosis

    Get PDF
    Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.R35 GM118173 - NIGMS NIH HHS; R01 HL126066 - NHLBI NIH HHS; R01 GM120272 - NIGMS NIH HHS; R01 CA218500 - NCI NIH HHS; R01 HL133190 - NHLBI NIH HHS; R33 AI105944 - NIAID NIH HHSPublished versio

    A quantum Monte Carlo study of the one-dimensional ionic Hubbard model

    Full text link
    Quantum Monte Carlo methods are used to study a quantum phase transition in a 1D Hubbard model with a staggered ionic potential (D). Using recently formulated methods, the electronic polarization and localization are determined directly from the correlated ground state wavefunction and compared to results of previous work using exact diagonalization and Hartree-Fock. We find that the model undergoes a thermodynamic transition from a band insulator (BI) to a broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with no long-range order, we have searched for a second transition to this state by (i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U. We find no transition from the BO to MI state, and we propose that the MI state in 1D is unstable to bond ordering under the addition of any finite ionic potential. In real 1D systems the symmetric MI phase is never stable and the transition is from a symmetric BI phase to a dimerized BO phase, with a metallic point at the transition
    • 

    corecore