2 research outputs found
The Human Immunodeficiency Virus Type 1 Envelope Confers Higher Rates of Replicative Fitness to Perinatally Transmitted Viruses than to Nontransmitted Viruses â–¿ â€
Selection of a minor viral genotype during perinatal transmission of human Immunodeficiency virus type 1 (HIV-1) has been observed, but there is a lack of information on the correlation of the restrictive transmission with biological properties of the virus, such as replicative fitness. Recombinant viruses expressing the enhanced green fluorescent protein or the Discosoma sp. red fluorescent (DsRed2) protein carrying the V1 to V5 regions of env from seven mother-infant pairs (MIPs) infected by subtype C HIV-1 were constructed, and competition assays were carried out to compare the fitness between the transmitted and nontransmitted viruses. Flow cytometry was used to quantify the frequency of infected cells, and the replicative fitness was determined based on a calculation that takes into account replication of competing viruses in a single infection versus dual infections. Transmitted viruses from five MIPs with the mothers chronically infected showed a restrictive env genotype, and all the recombinant viruses carrying the infants' Env had higher replicative fitness than those carrying the Env from the mothers. This growth fitness is lineage specific and can be observed only within the same MIP. In contrast, in two MIPs where the mothers had undergone recent acute infection, the viral Env sequences were similar between the mothers and infants and showed no further restriction in quasispecies during perinatal transmission. The recombinant viruses carrying the Env from the infants' viruses also showed replication fitness similar to those carrying the mothers' Env proteins. Our results suggest that newly transmitted viruses from chronically infected mothers have been selected to have higher replicative fitness to favor transmission, and this advantage is conferred by the V1 to V5 region of Env of the transmitted viruses. This finding has important implications for vaccine design or development of strategies to prevent HIV-1 transmission
Development of an Immunofluorescence Assay Using Recombinant Proteins Expressed in Insect Cells To Screen and Confirm Presence of Human Herpesvirus 8-Specific Antibodiesâ–¿
Human herpesvirus 8 (HHV-8), or Kaposi's sarcoma (KS)-associated herpesvirus, has been linked to all forms of KS. The results of most current serological assays for the detection of HHV-8-specific antibodies have low levels of concordance among themselves. To establish a sensitive and specific testing strategy that can be used to screen for HHV-8-specific antibodies, three HHV-8 proteins, ORF65, ORF73, and K8.1A, were expressed by using baculoviral vectors in insect cells and incorporated into a monoclonal antibody-enhanced immunofluorescence assay (mIFA) termed the Sf9 three-antigen mIFA. The results obtained by this mIFA were compared to those obtained by a standard mIFA with an HHV-8-infected B-cell line (BC3 mIFA). Test sera were obtained from patients diagnosed with KS, human immunodeficiency virus type 1-infected patients at high risk for HHV-8 infection, and healthy controls from a local blood bank. The combined use of both assays had a sensitivity of 94% and a specificity of 96%. The performance of these two assays when they were used together indicates that they may be useful for the reliable detection of HHV-8-specific immunoglobulin G antibodies in a population