30 research outputs found

    Flow and Noise Predictions of Coaxial Jets

    Get PDF

    Flow and Noise Predictions of Coaxial Jets using LES and RANS Methods

    Get PDF
    Flow and noise solutions of the two Large Eddy Simulation (LES) approaches are evaluated for the jet flow conditions corresponding to a benchmark co-axial jet case from the EU CoJeN (Computation of Coaxial Jet Noise) experiment. The jet is heated and issues for a short-cowl axi-symmetric nozzle with a central body at a transonic speed. The first LES method is based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) scheme, for which implementation features include asynchronous time stepping at an optimal Courant–Friedrichs–Lewy (CFL) number, a wall model, and a synthetic turbulence inflow boundary condition. The CABARET LES is implemented on Graphics Processing Units (GPUs). The second LES approach is based on the hybrid Reynolds Averaged Navier-Stokes (RANS)/ Implicit LES method that uses a mixture of high-order Roe and WENO scheme and a wall distance model of the Improved Delayed Detached Eddy Simulation (IDDES) type. The RANS/ILES method is run on an MPI cluster. Two grid generation approaches are considered: the unstructured grid using OpenFOAM utility “snappyHexMesh” (sHM) and the conventional structured multiblock body-fitted curvilinear grid. The LES flow solutions are compared with the experiment and also with solutions obtained from the standard axi-symmetric RANS method using the k- turbulence model. For noise predictions, The LES solutions are coupled with the penetrable surface formation of the Ffowcs Williams –Hawkings method. The results of noise predictions are compared with the experiment and the effect of different LES grids and acoustic integration surfaces is discussed

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients

    Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    No full text
    The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT) method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT). The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a 27% gain in spatial resolution can be obtained
    corecore