212 research outputs found
The multipliers of periodic points in one-dimensional dynamics
It will be shown that the smooth conjugacy class of an unimodal map which
does not have a periodic attractor neither a Cantor attractor is determined by
the multipliers of the periodic orbits. This generalizes a result by M.Shub and
D.Sullivan for smooth expanding maps of the circle
Renormalization in the Henon family, I: universality but non-rigidity
In this paper geometric properties of infinitely renormalizable real
H\'enon-like maps in are studied. It is shown that the appropriately
defined renormalizations converge exponentially to the one-dimensional
renormalization fixed point. The convergence to one-dimensional systems is at a
super-exponential rate controlled by the average Jacobian and a universal
function . It is also shown that the attracting Cantor set of such a map
has Hausdorff dimension less than 1, but contrary to the one-dimensional
intuition, it is not rigid, does not lie on a smooth curve, and generically has
unbounded geometry.Comment: 42 pages, 5 picture
Complex bounds for multimodal maps: bounded combinatorics
We proved the so called complex bounds for multimodal, infinitely
renormalizable analytic maps with bounded combinatorics: deep renormalizations
have polynomial-like extensions with definite modulus. The complex bounds is
the first step to extend the renormalization theory of unimodal maps to
multimodal maps.Comment: 20 pages, 3 figure
Complex maps without invariant densities
We consider complex polynomials for and
, and find some combinatorial types and values of such that
there is no invariant probability measure equivalent to conformal measure on
the Julia set. This holds for particular Fibonacci-like and Feigenbaum
combinatorial types when sufficiently large and also for a class of
`long-branched' maps of any critical order.Comment: Typos corrected, minor changes, principally to Section
Distribution of periodic points of polynomial diffeomorphisms of C^2
This paper deals with the dynamics of a simple family of holomorphic
diffeomorphisms of \C^2: the polynomial automorphisms. This family of maps
has been studied by a number of authors. We refer to [BLS] for a general
introduction to this class of dynamical systems. An interesting object from the
point of view of potential theory is the equilibrium measure of the set
of points with bounded orbits. In [BLS] is also characterized
dynamically as the unique measure of maximal entropy. Thus is also an
equilibrium measure from the point of view of the thermodynamical formalism. In
the present paper we give another dynamical interpretation of as the
limit distribution of the periodic points of
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
No elliptic islands for the universal area-preserving map
A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} to
prove the existence of a \textit{universal area-preserving map}, a map with
hyperbolic orbits of all binary periods. The existence of a horseshoe, with
positive Hausdorff dimension, in its domain was demonstrated in \cite{GJ1}. In
this paper the coexistence problem is studied, and a computer-aided proof is
given that no elliptic islands with period less than 20 exist in the domain. It
is also shown that less than 1.5% of the measure of the domain consists of
elliptic islands. This is proven by showing that the measure of initial
conditions that escape to infinity is at least 98.5% of the measure of the
domain, and we conjecture that the escaping set has full measure. This is
highly unexpected, since generically it is believed that for conservative
systems hyperbolicity and ellipticity coexist
The Julia sets and complex singularities in hierarchical Ising models
We study the analytical continuation in the complex plane of free energy of
the Ising model on diamond-like hierarchical lattices. It is known that the
singularities of free energy of this model lie on the Julia set of some
rational endomorphism related to the action of the Migdal-Kadanoff
renorm-group. We study the asymptotics of free energy when temperature goes
along hyperbolic geodesics to the boundary of an attractive basin of . We
prove that for almost all (with respect to the harmonic measure) geodesics the
complex critical exponent is common, and compute it
Typical orbits of quadratic polynomials with a neutral fixed point: Brjuno type
We describe the topological behavior of typical orbits of complex quadratic
polynomials P_alpha(z)=e^{2\pi i alpha} z+z^2, with alpha of high return type.
Here we prove that for such Brjuno values of alpha the closure of the critical
orbit, which is the measure theoretic attractor of the map, has zero area. Then
combining with Part I of this work, we show that the limit set of the orbit of
a typical point in the Julia set is equal to the closure of the critical orbit.Comment: 38 pages, 5 figures; fixed the issues with processing the figure
Boundaries of Siegel Disks: Numerical Studies of their Dynamics and Regularity
Siegel disks are domains around fixed points of holomorphic maps in which the maps are locally linearizable (i.e., become a rotation under an appropriate change of coordinates which is analytic in a neighborhood of the origin). The dynamical behavior of the iterates of the map on the boundary of the Siegel disk exhibits strong scaling properties which have been intensively studied in the physical and mathematical literature. In the cases we study, the boundary of the Siegel disk is a Jordan curve containing a critical point of the map (we consider critical maps of different orders), and there exists a natural parametrization which transforms the dynamics on the boundary into a rotation. We compute numerically this parameterization and use methods of harmonic analysis to compute the global Holder regularity of the parametrization for different maps and rotation numbers. We obtain that the regularity of the boundaries and the scaling exponents are universal numbers in the sense of renormalization theory (i.e., they do not depend on the map when the map ranges in an open set), and only depend on the order of the critical point of the map in the boundary of the Siegel disk and the tail of the continued function expansion of the rotation number. We also discuss some possible relations between the regularity of the parametrization of the boundaries and the corresponding scaling exponents. (C) 2008 American Institute of Physics.NSFMathematic
- …
