15 research outputs found

    Rapid noise prediction models for serrated leading and trailing edges

    Get PDF
    Leading- and trailing-edge serrations have been widely used to reduce the leading- and trailing-edge noise in applications such as contra-rotating fans and large wind turbines. Recent studies show that these two noise problems can be modelled analytically using the Wiener-Hopf method. However, the resulting models involve infinite-interval integrals that cannot be evaluated analytically, and consequently implementing them poses practical difficulty. This paper develops easily-implementable noise prediction models for flat plates with serrated leading and trailing edges, respectively. By exploiting the fact that high-order modes are cut-off and adjacent modes do not interfere in the far field except at sufficiently high frequencies, an infinite-interval integral involving two infinite sums is approximated by a single straightforward sum. Numerical comparison shows that the resulting models serve as excellent approximations to the original models. Good agreement is also achieved when the leading-edge model predictions are compared with experimental results for sawtooth serrations of various root-to-tip amplitudes, whereas a qualitative evaluation of TE noise model shows that an accurate characterisation of the wall pressure statistics beneath the boundary layers is crucial for accurate TE noise prediction. Importantly, the models developed in this paper can be evaluated robustly in a very efficient manner. For example, a typical far-field noise spectrum can be calculated within milliseconds for both the trailing- and leading-edge noise models on a standard desktop computer. Due to their efficiency and ease of numerical implementation, these models are expected to be of particular importance in applications where a numerical optimization is likely to be needed

    Acoustic emission due to the interaction between shock and instability waves in 2D supersonic jet flows

    Full text link
    An analytical model is developed to study the sound produced by the interaction between shock and instability waves in two-dimensional supersonic jet flows. The jet is considered to be of vortex-sheet type and 2D Euler equations are linearised to determine the governing equations for shock, instability waves, and their interaction. Pack's model is used to describe shock waves, while instability waves are calculated using spatial stability analysis. The interaction between shock and instability waves can be solved analytically by performing Fourier transform and subsequently using the method of steepest descent. Sound produced by the interaction between the instability wave and a single shock cell is studied first, after which that due to a number of cells follows. We find that the model developed in this study can correctly predict the frequencies of the fundamental screech tone and its first and second harmonics. We show that the predicted sound directivity, even from a single shock cell, is in good agreement with experimental data. In particular, this model shows the strongest noise emission close to the upstream direction but the emitted noise starts to rapidly decay as the observer angle approaches 180 degrees, which is in accordance with experimental results; this suggests that the effective noise from a single shock cell is far from of the monopole type as assumed in the classical Powell's model. We find that the noise directivity is very sensitive to the local growth rate of the instability waves and the noise is generated primarily through the Mach wave mechanism.Comment: submitted to the Journal of Fluid Mechanic

    Prediction of installed jet noise

    Get PDF
    A semianalytical model for installed jet noise is proposed in this paper. We argue and conclude that there exist two distinct sound source mechanisms for installed jet noise, and the model is therefore composed of two parts to account for these different sound source mechanisms. Lighthill’s acoustic analogy and a fourth-order space–time correlation model for the Lighthill stress tensor are used to model the sound induced by the equivalent turbulent quadrupole sources, while the trailing-edge scattering of near-field evanescent instability waves is modelled using Amiet’s approach. A non-zero ambient mean flow is taken into account. It is found that, when the rigid surface is not so close to the jet as to affect the turbulent flow field, the trailing-edge scattering of near-field evanescent waves dominates the low-frequency amplification of installed jet noise in the far-field. The high-frequency noise enhancement on the reflected side is due to the surface reflection effect. The model agrees well with experimental results at different observer angles, apart from deviations caused by the mean-flow refraction effect at high frequencies at low observer angles.The first author (B.L.) wishes to gratefully acknowledge the financial support co-funded by the Cambridge Commonwealth European and International Trust and the China Scholarship Council. The third author (I.N.) wishes to acknowledge the UK Turbulence Consortium (UKTC) for the high-performance computing time to carry out the LES simulation on ARCHER under EPSRC grant no. EP/L000261/1 and under a PRACE award on HERMIT

    On the acoustic optimality of leading-edge serration profiles

    No full text
    Leading-edge serrations are studied extensively as a way of reducing leading-edge noise and have been shown to be able to reduce leading-edge noise significantly. Previous experiments showed that different serration geometries have different noise reduction capabilities. However, the optimal serration geometry has not been known. Consequently, there are no guides that can be used at the design stage of serrations. In this paper, by performing an asymptotic analysis, we show that in order to achieve greater noise reduction in the high frequency regime (k1h >> 1, where k1 denotes the streamwise hydrodynamic wavenumber and h half of the root-to-tip amplitude of serrations), the serration profile cannot have stationary points. Therefore, piecewise smooth profiles free of stationary points are more desirable. Moreover, we show that greater noise can be achieved in the high frequency regime by using serrations that are sharper around the non-smooth points. The underlying physical mechanisms of these findings are discussed. Based on these findings, a new type of serration profile is proposed, and analytical model evaluations confirm its improved acoustic performance in the frequency range of interest. At low frequencies, a slight deterioration may be expected, but this is often negligible. To verify the conclusion drawn from the analysis, we perform an experimental study to investigate the acoustic performance of this new serration design. The results show that it is indeed superior than conventional sawtooth serrations. For example, a remarkable 7 dB additional noise reduction is observed in the intermediate frequency range with no perceivable noise increase elsewhere. The trends predicted by the analysis are well validated by the experiment. It is expected that these findings can serve as an essential guide for designing serrations, and lead to more acoustically optimized serration geometries
    corecore