23 research outputs found

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    Root Canal Anatomy of Maxillary and Mandibular Teeth

    Get PDF
    It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio
    corecore