13 research outputs found

    Laboratory information management system for COVID-19 non-clinical efficacy trial data

    Get PDF
    Background : As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. Results : In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. Conclusions : This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.This research was supported by the National research foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020M3A9I2109027 and 2021M3H9A1030260)

    Identification of canine norovirus in dogs in South Korea

    No full text
    Abstract Background Canine noroviruses (CaNoVs) are classified into genogroups GIV, GVI, and GVII and have been detected in fecal samples from dogs since their first appearance in a dog with enteritis in Italy in 2007. CaNoVs may be a public health concern because pet animals are an integral part of the family and could be a potential reservoir of zoonotic agents. Nonetheless, there was no previous information concerning the epidemiology of CaNoV in South Korea. In the present study, we aimed to detect CaNoV antigens and to investigate serological response against CaNoV in dogs. Results In total, 459 fecal samples and 427 sera were collected from small animal clinics and animal shelters housing free-roaming dogs in geographically distinct areas in South Korea. For the detection of CaNoV, RT-PCR was performed using target specific primers, and nucleotide sequences of CaNoV isolates were phylogenetically analyzed. Seroprevalence was performed by ELISA based on P domain protein. CaNoVs were detected in dog fecal samples (14/459, 3.1%) and were phylogenetically classified into the same cluster as previously reported genogroup GIV CaNoVs. Seroprevalence was performed, and 68 (15.9%) of 427 total dog serum samples tested positive for CaNoV IgG antibodies. Conclusion This is the first study identifying CaNoV in the South Korean dog population

    Cell-mimetic biosensors to detect avian influenza virus via viral fusion

    No full text
    Avian influenza virus (AIV) causes acute infectious diseases in poultry, critically impacting food supply. Highly pathogenic avian influenza viruses (HPAIVs), in particular, cause morbidity and mortality, resulting in significant economic losses in the poultry industry. To prevent the spread of HPAIVs, detection at early stages is critical to implement effective countermeasures such as quarantine and isolation. Through a viral fusion mechanism, cell-mimetic nanoparticles (CMPs), developed in the current study, can rapidly detect HPAIV and low pathogenic AIV (LPAIV). The CMPs comprise polymeric nanoparticles, which are constructed using sialic acid and fluorescence resonance energy transfer (FRET) dye pairs that expose the FRET off signal in response to LPAIV and HPAIV, after activation by enzymatic cleavage in the endosomal environment. The CMPs detect a wide variety of LPAIVs and HPAIVs in biological environments. Additionally, the cross-reactivity of CMPs is determined by testing their function with different viral species. Therefore, these findings demonstrate the significant potential of the proposed strategy for mimicking viral infection in vitro and using them as a highly effective diagnostic assay to rapidly detect LPAIV and HPAIV, preventing economic losses associated with viral outbreaks.N

    Susceptibility to SARS-CoV-2 and MERS-CoV in Beagle Dogs

    No full text
    The coronavirus disease 19 (COVID-19) pandemic, caused by the severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2), has resulted in unprecedented challenges to healthcare worldwide. In particular, the anthroponotic transmission of human coronaviruses has become a common concern among pet owners. Here, we experimentally inoculated beagle dogs with SARS-CoV-2 or Middle East respiratory syndrome (MERS-CoV) to compare their susceptibility to and the pathogenicity of these viruses. The dogs in this study exhibited weight loss and increased body temperatures and shed the viruses in their nasal secretions, feces, and urine. Pathologic changes were observed in the lungs of the dogs inoculated with SARS-CoV-2 or MERS-CoV. Additionally, clinical characteristics of SARS-CoV-2, such as increased lactate dehydrogenase levels, were identified in the current study

    Severe acute respiratory syndrome coronavirus 2 and influenza A virus co-infection alters viral tropism and haematological composition in Syrian hamsters

    No full text
    © 2022 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH.The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.N

    Erratum: Correction to: Germinal Center-Induced Immunity Is Correlated With Protection Against SARS-CoV-2 Reinfection But Not Lung Damage (The Journal of infectious diseases (2021) 224 11 (1861-1872))

    No full text
    In the original publication of this article, [Green K, Kim DH, Bae S et al. Germinal Center-Induced Immunity Is Correlated With Protection Against SARS-CoV-2 Reinfection But Not Lung Damage. https://doi.org/10.1093/jid/jiab535], a statement of equal contribution was missing for the authors Sung-Han Kim and Jung Joo Hong. This is currently available in the version of the article online.Y
    corecore