16,628 research outputs found

    The mid-domain effect: It’s not just about space

    Get PDF
    Ecologists and biogeographers have long sought to understand how and why diversity varies across space. Up until the late 20th century, the dominant role of environmental gradients and historical processes in driving geographical species richness patterns went largely undisputed. However, almost 20 years ago, Colwell & Hurtt (1994) proposed a radical reappraisal of ecological gradient theory that called into question decades of empirical and theoretical research. That controversial idea was later termed the ‘the mid-domain effect’: the simple proposition that in the absence of environmental gradients, the random placement of species ranges within a bounded domain will give rise to greatest range overlap, and thus richness, at the center of the domain (Colwell & Lees, 2000) (Fig. 1a). The implication of this line of reasoning is that the conventional null model of equal species richness regardless of latitude, elevation or depth should be replaced by one where richness peaks at some midpoint in geographical space. Our intention here is to draw attention to a neglected, yet important manifestation of the mid-domain effect, namely the application of mid-domain models (also referred to as geometric constraint models) to non-spatial domains. If individual species have ranges that exist not just in geographical space but also in environmental factors, such as temperature, rainfall, pH, productivity or disturbance, shouldn’t we also expect mid-domain richness peaks along non-spatial gradients? A mid-domain model applied to non-spatial gradients predicts the maximum potential richness for every value of an environmental factor. As with spatial mid-domain models, realized richness would probably be less, but the limits to richness are still predicted to be hump-shaped. Indeed, hump-shaped relationships emerge with remarkably high frequency across various non-spatial gradients. For instance, two of ecology’s most fundamental, albeit controversial theories – the productivity–diversity relationship and the intermediate disturbance hypothesis – predict mid-domain peaks in species richness. However, the potential of non-spatial mid-domain models has gone largely ignored

    Symmetric mixed states of nn qubits: local unitary stabilizers and entanglement classes

    Full text link
    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states into six classes. These include the stabilizer types of the Werner states, the GHZ state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for published versio

    Standard Model Top Quark Asymmetry at the Fermilab Tevatron

    Full text link
    Top quark pair production at proton-antiproton colliders is known to exhibit a forward-backward asymmetry due to higher-order QCD effects. We explore how this asymmetry might be studied at the Fermilab Tevatron, including how the asymmetry depends on the kinematics of extra hard partons. We consider results for top quark pair events with one and two additional hard jets. We further note that a similar asymmetry, correlated with the presence of jets, arises in specific models for parton showers in Monte Carlo simulations. We conclude that the measurement of this asymmetry at the Tevatron will be challenging, but important both for our understanding of QCD and for our efforts to model it.Comment: 26 p., 10 embedded figs., comment added, version to appear in PR

    Wong-Zakai approximation of solutions to reflecting stochastic differential equations on domains in Euclidean spaces II

    Full text link
    The strong convergence of Wong-Zakai approximations of the solution to the reflecting stochastic differential equations was studied in [2]. We continue the study and prove the strong convergence under weaker assumptions on the domain.Comment: To appear in "Stochastic Analysis and Applications 2014-In Honour of Terry Lyons", Springer Proceedings in Mathematics and Statistic

    Generational Career Shifts: how Matures, Boomers, Gen Xers, and Millennials view work

    Get PDF
    We examined several career concepts, including career identity, planning and resilience, career salience, work locus of control, modern career orientations, career self-efficacy, and career anchors, as well as the expectations of pre-career Millennials. Overall, our study shows significant intergenerational differences across many of these concepts. For example, Matures identified with their careers more than other generations, which suggests that work plays a more central role in their lives. Millennials and Gen X employees indicated a belief that they are not in control of their career success. Moreover, Millennials had lower levels of selfefficacy than both Gen X and Boomer employees. In terms of career anchors, we found that each successive younger generation placed more importance on autonomy and independence, entrepreneurial creativity, lifestyle, service, and dedication. Lastly, pre-career Millennials indicated high expectations for salary growth over their careers, despite expecting to take an average of five years off of work for child-rearing and travel activities
    • …
    corecore