14,776 research outputs found

    Maximum stabilizer dimension for nonproduct states

    Full text link
    Composite quantum states can be classified by how they behave under local unitary transformations. Each quantum state has a stabilizer subgroup and a corresponding Lie algebra, the structure of which is a local unitary invariant. In this paper, we study the structure of the stabilizer subalgebra for n-qubit pure states, and find its maximum dimension to be n-1 for nonproduct states of three qubits and higher. The n-qubit Greenberger-Horne-Zeilinger state has a stabilizer subalgebra that achieves the maximum possible dimension for pure nonproduct states. The converse, however, is not true: we show examples of pure 4-qubit states that achieve the maximum nonproduct stabilizer dimension, but have stabilizer subalgebra structures different from that of the n-qubit GHZ state.Comment: 6 page

    Werner state structure and entanglement classification

    Full text link
    We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called the {\em decoherence-free} states, which are states of nn quantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state, and a construction that assembles these into Werner states.Comment: 9 pages, 2 figures, minor changes and corrections for version

    Classification of nonproduct states with maximum stabilizer dimension

    Full text link
    Nonproduct n-qubit pure states with maximum dimensional stabilizer subgroups of the group of local unitary transformations are precisely the generalized n-qubit Greenberger-Horne-Zeilinger states and their local unitary equivalents, for n greater than or equal to 3 but not equal to 4. We characterize the Lie algebra of the stabilizer subgroup for these states. For n=4, there is an additional maximal stabilizer subalgebra, not local unitary equivalent to the former. We give a canonical form for states with this stabilizer as well.Comment: 6 pages, version 3 has a typographical correction in the displayed equation just after numbered equation (2), and other minor correction

    Minimum orbit dimension for local unitary action on n-qubit pure states

    Full text link
    The group of local unitary transformations partitions the space of n-qubit quantum states into orbits, each of which is a differentiable manifold of some dimension. We prove that all orbits of the n-qubit quantum state space have dimension greater than or equal to 3n/2 for n even and greater than or equal to (3n + 1)/2 for n odd. This lower bound on orbit dimension is sharp, since n-qubit states composed of products of singlets achieve these lowest orbit dimensions.Comment: 19 page

    Classification of n-qubit states with minimum orbit dimension

    Full text link
    The group of local unitary transformations acts on the space of n-qubit pure states, decomposing it into orbits. In a previous paper we proved that a product of singlet states (together with an unentangled qubit for a system with an odd number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2 for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this paper we show that any state with minimum orbit dimension must be of this form, and furthermore, such states are classified up to local unitary equivalence by the sets of pairs of qubits entangled in singlets.Comment: 15 pages, latex, revision 2, conclusion added, some proofs shortene

    Microwave properties of DyBa_2Cu_3O_(7-x) monodomains and related compounds in magnetic fields

    Full text link
    We present a microwave characterization of a DyBa2_{2}Cu3_{3}O7−x_{7-x} single domain, grown by the top-seeded melt-textured technique. We report the (a,b) plane field-induced surface resistance, ΔRs(H)\Delta R_s(H), at 48.3 GHz, measured by means of a cylindrical metal cavity in the end-wall-replacement configuration. Changes in the cavity quality factor Q against the applied magnetic field yield ΔRs(H)\Delta R_s(H) at fixed temperatures. The temperature range [70 K ; T_c] was explored. The magnetic field μ0H<\mu_0 H < 0.8 T was applied along the c axis. The field dependence of ΔRs(H)\Delta R_s(H) does not exhibit the steep, step-like increase at low fields typical of weak-links. This result indicates the single-domain character of the sample under investigation. ΔRs(H)\Delta R_s(H) exhibits a nearly square-root dependence on H, as expected for fluxon motion. From the analysis of the data in terms of motion of Abrikosov vortices we estimate the temperature dependences of the London penetration depth λ\lambda and the vortex viscosity η\eta, and their zero-temperature values λ(0)=\lambda(0)=165 nm and η(0)=\eta(0)= 3 10−7^{-7} Nsm−2^{-2}, which are found in excellent agreement with reported data in YBa2_{2}Cu3_{3}O7−x_{7-x} single crystals. Comparison of microwave properties with those of related samples indicate the need for reporting data as a function of T/T_c in order to obtain universal laws.Comment: 6 pages, 4 figures, LaTeX, submitted to Journal of Applied Physic

    It takes one to know one: Relationship between lie detection and psychopathy

    Get PDF
    We investigated primary and secondary psychopathy and the ability to detect high-stakes, real-life emotional lies in an on-line experiment (N = 150). Using signal detection analysis, we found that lie detection ability was overall above chance level, there was a tendency towards responding liberally to the test stimuli, and women were more accurate than men Further, sex moderated the relationship between psychopathy and lie detection ability; in men, primary psychopathy had a significant positive correlation with the ability to detect lies, whereas in women there was a significant negative correlation with deception detection. The results are discussed with reference to evolutionary theory and sex differences in processing socio-emotional information

    Wong-Zakai approximation of solutions to reflecting stochastic differential equations on domains in Euclidean spaces II

    Full text link
    The strong convergence of Wong-Zakai approximations of the solution to the reflecting stochastic differential equations was studied in [2]. We continue the study and prove the strong convergence under weaker assumptions on the domain.Comment: To appear in "Stochastic Analysis and Applications 2014-In Honour of Terry Lyons", Springer Proceedings in Mathematics and Statistic

    Multiparty quantum states stabilized by the diagonal subgroup of the local unitary group

    Full text link
    We classify, up to local unitary equivalence, the set of nn-qubit states that is stabilized by the diagonal subgroup of the local unitary group. We exhibit a basis for this set, parameterized by diagrams of nonintersecting chords connecting pairs of points on a circle, and give a criterion for when the stabilizer is precisely the diagonal subgroup and not larger. This investigation is part of a larger program to partially classify entanglement type (local unitary equivalence class) via analysis of stabilizer structure.Comment: 4 pages, 3 figures. Version 2 has numerous small changes and correction
    • …
    corecore