7,122 research outputs found

    Electron Paramagnetic Resonance of Boron Acceptors in Isotopically Purified Silicon

    Full text link
    The electron paramagnetic resonance (EPR) linewidths of B acceptors in Si are found to reduce dramatically in isotopically purified 28Si single crystals. Moreover, extremely narrow substructures in the EPR spectra are visible corresponding to either an enhancement or a reduction of the absorbed microwave on resonance. The origin of the substructures is attributed to a combination of simultaneous double excitation and spin relaxation in the four level spin system of the acceptors. A spin population model is developed which qualitatively describes the experimental results.Comment: 4 pages, 3 figure

    Coherence of Spin Qubits in Silicon

    Full text link
    Given the effectiveness of semiconductor devices for classical computation one is naturally led to consider semiconductor systems for solid state quantum information processing. Semiconductors are particularly suitable where local control of electric fields and charge transport are required. Conventional semiconductor electronics is built upon these capabilities and has demonstrated scaling to large complicated arrays of interconnected devices. However, the requirements for a quantum computer are very different from those for classical computation, and it is not immediately obvious how best to build one in a semiconductor. One possible approach is to use spins as qubits: of nuclei, of electrons, or both in combination. Long qubit coherence times are a prerequisite for quantum computing, and in this paper we will discuss measurements of spin coherence in silicon. The results are encouraging - both electrons bound to donors and the donor nuclei exhibit low decoherence under the right circumstances. Doped silicon thus appears to pass the first test on the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200

    Host isotope mass effects on the hyperfine interaction of group-V donors in silicon

    Full text link
    The effects of host isotope mass on the hyperfine interaction of group-V donors in silicon are revealed by pulsed electron nuclear double resonance (ENDOR) spectroscopy of isotopically engineered Si single crystals. Each of the hyperfine-split P-31, As-75, Sb-121, Sb-123, and Bi-209 ENDOR lines splits further into multiple components, whose relative intensities accurately match the statistical likelihood of the nine possible average Si masses in the four nearest-neighbor sites due to random occupation by the three stable isotopes Si-28, Si-29, and Si-30. Further investigation with P-31 donors shows that the resolved ENDOR components shift linearly with the bulk-averaged Si mass.Comment: 5 pages, 4 figures, 1 tabl

    Fluorescent Silicon Clusters and Nanoparticles

    Full text link
    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon such as excitation, energy relaxation, radiative and non-radiative decay pathways and surface passivation. Experimental methods for the production of silicon clusters are presented. The geometric and electronic properties are reviewed and the implications for the ability to emit fluorescence are discussed. Free and pure silicon clusters produced in molecular beams appear to have properties that are unfavourable for light emission. However, when passivated or embedded in a suitable host, they may emit fluorescence. The current available data show that both quantum confinement and localised transitions, often at the surface, are responsible for fluorescence. By building silicon clusters atom by atom, and by embedding them in shells atom by atom, new insights into the microscopic origins of fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor Klaus D. Sattler, CRC Press, August 201

    Coherent state transfer between an electron- and nuclear spin in 15N@C60

    Get PDF
    Electron spin qubits in molecular systems offer high reproducibility and the ability to self assemble into larger architectures. However, interactions between neighbouring qubits are 'always-on' and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both controllably turn on/off dipolar interactions between neighbouring spins and benefit from the long nuclear spin decoherence times (T2n). We transfer qubit states between the electron and 15N nuclear spin in 15N@C60 with a two-way process fidelity of 88%, using a series of tuned microwave and radiofrequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.Comment: 5 pages, 3 figures with supplementary material (8 pages
    • …
    corecore