21 research outputs found

    The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability

    Get PDF
    Rehabilitative interventions involving electrical stimulation show promise for neuroplastic recovery in people living with Spinal Cord Injury (SCI). However, the understanding of how stimulation interacts with descending and spinal excitability remain unclear. In this study we compared the immediate and short-term (within a few minutes) effects of pairing Transcranial Magnetic Stimulation (TMS) with transcutaneous Spinal Cord stimulation (tSCS) and Peripheral Nerve Stimulation (PNS) on Corticospinal excitability in healthy subjects. Three separate experimental conditions were assessed. In Experiment I, paired associative stimulation (PAS) was applied, involving repeated pairing of single pulses of TMS and tSCS, either arriving simultaneously at the spinal motoneurones (PAS0ms) or slightly delayed (PAS5ms). Corticospinal and spinal excitability, and motor performance, were assessed before and after the PAS interventions in 24 subjects. Experiment II compared the immediate effects of tSCS and PNS on corticospinal excitability in 20 subjects. Experiment III compared the immediate effects of tSCS with tSCS delivered at the same stimulation amplitude but modulated with a carrier frequency (in the kHz range) on corticospinal excitability in 10 subjects. Electromyography (EMG) electrodes were placed over the Tibialis Anterior (TA) soleus (SOL) and vastus medialis (VM) muscles and stimulation electrodes (cathodes) were placed on the lumbar spine (tSCS) and lateral to the popliteal fossa (PNS). TMS over the primary motor cortex (M1) was paired with tSCS or PNS to produce Motor Evoked Potentials (MEPs) in the TA and SOL muscles. Simultaneous delivery of repetitive PAS (PAS0ms) increased corticospinal excitability and H-reflex amplitude at least 5 min after the intervention, and dorsiflexion force was increased in a force-matching task. When comparing effects on descending excitability between tSCS and PNS, a subsequent facilitation in MEPs was observed following tSCS at 30-50 ms which was not present following PNS. To a lesser extent this facilitatory effect was also observed with HF- tSCS at subthreshold currents. Here we have shown that repeated pairing of TMS and tSCS can increase corticospinal excitability when timed to arrive simultaneously at the alpha-motoneurone and can influence functional motor output. These results may be useful in optimizing stimulation parameters for neuroplasticity in people living with SCI

    The effects of FES cycling combined with virtual reality racing biofeedback on voluntary function after incomplete SCI: A pilot study

    No full text
    Background Functional Electrical Stimulation (FES) cycling can benefit health and may lead to neuroplastic changes following incomplete spinal cord injury (SCI). Our theory is that greater neurological recovery occurs when electrical stimulation of peripheral nerves is combined with voluntary effort. In this pilot study, we investigated the effects of a one-month training programme using a novel device, the iCycle, in which voluntary effort is encouraged by virtual reality biofeedback during FES cycling. Methods Eleven participants (C1-T12) with incomplete SCI (5 sub-acute; 6 chronic) were recruited and completed 12-sessions of iCycle training. Function was assessed before and after training using the bilateral International Standards for Neurological Classification of SCI (ISNC-SCI) motor score, Oxford power grading, Modified Ashworth Score, Spinal Cord Independence Measure, the Walking Index for Spinal Cord Injury and 10 m-walk test. Power output (PO) was measured during all training sessions. Results Two of the 6 participants with chronic injuries, and 4 of the 5 participants with sub-acute injuries, showed improvements in ISNC-SCI motor score > 8 points. Median (IQR) improvements were 3.5 (6.8) points for participants with a chronic SCI, and 8.0 (6.0) points for those with sub-acute SCI. Improvements were unrelated to other measured variables (age, time since injury, baseline ISNC-SCI motor score, baseline voluntary PO, time spent training and stimulation amplitude; p > 0.05 for all variables). Five out of 11 participants showed moderate improvements in voluntary cycling PO, which did not correlate with changes in ISNC-SCI motor score. Improvement in PO during cycling was positively correlated with baseline voluntary PO (R2 = 0.50; p < 0.05), but was unrelated to all other variables (p > 0.05). The iCycle was not suitable for participants who were too weak to generate a detectable voluntary torque or whose effort resulted in a negative torque. Conclusions Improved ISNC-SCI motor scores in chronic participants may be attributable to the iCycle training. In sub-acute participants, early spontaneous recovery and changes due to iCycle training could not be distinguished. The iCycle is an innovative progression from existing FES cycling systems, and positive results should be verified in an adequately powered controlled trial

    The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study

    No full text
    Spinal cord stimulation may enable recovery of volitional motor control in people with chronic Spinal Cord Injury (SCI). In this study we explored the effects of adding SCS, applied transcutaneously (tSCS) at vertebral levels T10/11, to a sit-to-stand training intervention in people with motor complete and incomplete SCI. Nine people with chronic SCI (six motor complete; three motor incomplete) participated in an 8-week intervention, incorporating three training sessions per week. Participants received either tSCS combined with sit-to-stand training (STIM) or sit-to-stand training alone (NON-STIM). Outcome measures were carried out before and after the intervention. Seven participants completed the intervention (STIM N = 5; NON-STIM N = 2). Post training, improvements in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor scores were noted in three STIM participants (range 1.0–7.0), with no change in NON-STIM participants. Recovery of volitional lower limb muscle activity and/or movement (with tSCS off) was noted in three STIM participants. Unassisted standing was not achieved in any participant, although standing with minimal assistance was achieved in one STIM participant. This pilot study has shown that the recruitment of participants, intervention and outcome measures were all feasible in this study design. However, some modifications are recommended for a larger trial

    Mean value and standard deviation about the age, height, weight, BMI, sex, and pain (as assessed by the KOOS score) and the number of subjects that have experienced a surgery or an injury for both the control and the knee OA subjects.

    No full text
    <p>Demographic details of the subjects</p><p>Mean value and standard deviation about the age, height, weight, BMI, sex, and pain (as assessed by the KOOS score) and the number of subjects that have experienced a surgery or an injury for both the control and the knee OA subjects.</p
    corecore