23 research outputs found

    Mutations in KDSR Cause Recessive Progressive Symmetric Erythrokeratoderma

    Get PDF
    Supplemental Data Supplemental Data include five figures and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2017.05.003. Supplemental Data Document S1. Figures S1–S5 and Tables S1–S3 Download Document S2. Article plus Supplemental Data Download Web Resources 1000 Genomes, http://www.internationalgenome.org/ ANNOVAR, http://annovar.openbioinformatics.org/en/latest/ BWA-MEM, http://bio-bwa.sourceforge.net/index.shtml Database of Genomic Variants, http://dgv.tcag.ca/dgv/app/home dbSNP, https://www.ncbi.nlm.nih.gov/projects/SNP/ Exome Aggregation Consortium (ExAC) Browser, http://exac.broadinstitute.org/ ExonPrimer, https://ihg.helmholtz-muenchen.de/ihg/ExonPrimer.html GenBank, https://www.ncbi.nlm.nih.gov/genbank/ Genome Analysis Toolkit (GATK), https://software.broadinstitute.org/gatk/ Integrative Genomics Viewer (IGV), http://software.broadinstitute.org/software/igv/ OMIM, https://www.omim.org/ SNPmasker, http://bioinfo.ebc.ee/snpmasker/ UCSC Genome Browser, https://genome.ucsc.edu/index.html Variant Effect Predictor, http://useast.ensembl.org/info/docs/tools/vep/index.html The discovery of new genetic determinants of inherited skin disorders has been instrumental to the understanding of epidermal function, differentiation, and renewal. Here, we show that mutations in KDSR (3-ketodihydrosphingosine reductase), encoding an enzyme in the ceramide synthesis pathway, lead to a previously undescribed recessive Mendelian disorder in the progressive symmetric erythrokeratoderma spectrum. This disorder is characterized by severe lesions of thick scaly skin on the face and genitals and thickened, red, and scaly skin on the hands and feet. Although exome sequencing revealed several of the KDSR mutations, we employed genome sequencing to discover a pathogenic 346 kb inversion in multiple probands, and cDNA sequencing and a splicing assay established that two mutations, including a recurrent silent third base change, cause exon skipping. Immunohistochemistry and yeast complementation studies demonstrated that the mutations cause defects in KDSR function. Systemic isotretinoin therapy has achieved nearly complete resolution in the two probands in whom it has been applied, consistent with the effects of retinoic acid on alternative pathways for ceramide generation

    Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome

    No full text
    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin

    Expanding the Genotypic Spectrum of Bathing Suit Ichthyosis.

    Get PDF
    Importance: Bathing suit ichthyosis (BSI) is a rare congenital disorder of keratinization characterized by restriction of scale to sites of relatively higher temperature such as the trunk, with cooler areas remaining unaffected. Fewer than 40 cases have been reported in the literature. Bathing suit ichthyosis is caused by recessive, temperature-sensitive mutations in the transglutaminase-1 gene (TGM1). Clear genotype-phenotype correlations have been difficult to establish because several of the same TGM1 mutations have been reported in BSI and other forms of congenital ichthyosis. We identify novel and recurrent mutations in 16 participants with BSI. Objective: To expand the genotypic spectrum of BSI, identifying novel TGM1 mutations in patients with BSI, and to use BSI genotypes to draw inferences about the temperature sensitivity of TGM1 mutations. Design, Setting, and Participants: A total of 16 participants with BSI from 13 kindreds were identified from 6 academic medical centers. A detailed clinical history was obtained from each participant, including phenotypic presentation at birth and disease course. Each participant underwent targeted sequencing of TGM1. Main Outcomes and Measures: Phenotypic and genotypic characteristics in these patients from birth onward. Results: Of the 16 participants, 7 were male, and 9 were female (mean age, 12.6 years; range, 1-39 years). We found 1 novel TGM1 indel mutation (Ile469_Cys471delinsMetLeu) and 8 TGM1 missense mutations that to our knowledge have not been previously reported in BSI: 5 have been previously described in non-temperature-sensitive forms of congenital ichthyosis (Arg143Cys, Gly218Ser, Gly278Arg, Arg286Gln, and Ser358Arg), and 3 (Tyr374Cys, Phe495Leu, and Ser772Arg) are novel mutations. Three probands were homozygous for Arg264Trp, Arg286Gln, or Arg315Leu, indicating that these mutations are temperature sensitive. Seven of 10 probands with a compound heterozygous TGM1 genotype had a mutation at either arginine 307 or 315, providing evidence that mutations at these sites are temperature sensitive and highlighting the importance of these residues in the pathogenesis of BSI. Conclusions and Relevance: Our findings expand the genotypic spectrum of BSI and the understanding of temperature sensitivity of TGM1 mutations. Increased awareness of temperature-sensitive TGM1 genotypes should aid in genetic counseling and provide insights into the pathophysiology of TGM1 ichthyoses, transglutaminase-1 enzymatic activity, and potential therapeutic approaches

    The World at America\u27s Doorstep: Service Learning in Preparation to Teach Global Students

    No full text
    Immigration trends in the United States necessitate the preparation of new K-12 teachers to teach diverse populations and to recognize the capabilities of immigrant and refugee children. Transformative learning that results from service learning offers a promising opportunity for preservice teachers to gain awareness and change their attitudes toward these children. This study examined the role of service learning where undergraduate education students tutored at a local refugee agency or elementary school. An analysis of their journal entries indicated changes in beliefs and attitudes toward refugee and other immigrant children, including the acknowledgement of their motivation and determination when confronted by challenges not faced by students born in the United States
    corecore