24 research outputs found
Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis
AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by selective upper and lower motor neuron degeneration, the pathogenesis of which is unknown. About 60%–70% of sporadic ALS patients have a 30%–95% loss of the astroglial glutamate transporter EAAT2 (excitatory amino acid transporter 2) protein in motor cortex and spinal cord. Loss of EAAT2 leads to increased extracellular glutamate and excitotoxic neuronal degeneration. Multiple abnormal EAAT2 mRNAs, including intron-retention and exon-skipping, have now been identified from the affected areas of ALS patients. The aberrant mRNAs were highly abundant and were found only in neuropathologically affected areas of ALS patients but not in other brain regions. They were found in 65% of sporadic ALS patients but were not found in nonneurologic disease or other disease controls. They were also detectable in the cerebrospinal fluid (CSF) of living ALS patients, early in the disease. In vitro expression studies suggest that proteins translated from these aberrant mRNAs may undergo rapid degradation and/or produce a dominant negative effect on normal EAAT2 resulting in loss of protein and activity. These findings suggest that the loss of EAAT2 in ALS is due to aberrant mRNA and that these aberrant mRNAs could result from RNA processing errors. Aberrant RNA processing could be important in the pathophysiology of neurodegenerative disease and in excitotoxicity. The presence of these mRNA species in ALS CSF may have diagnostic utility
Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate
AbstractThree glutamate transporters have been identified in rat, including astroglial transporters GLAST and GLT-1 and a neuronal transporter EAAC1. Here we demonstrate that inhibition of the synthesis of each glutamate transporter subtype using chronic antisense oligonucleotide administration, in vitro and in vivo, selectively and specifically reduced the protein expression and function of glutamate transporters. The loss of glial glutamate transporters GLAST or GLT-1 produced elevated extracellular glutamate levels, neurodegeneration characteristic of excitotoxicity, and a progressive paralysis. The loss of the neuronal glutamate transporter EAAC1 did not elevate extracellular glutamate in the striatum but did produce mild neurotoxicity and resulted in epilepsy. These studies suggest that glial glutamate transporters provide the majority of functional glutamate transport and are essential for maintaining low extracellular glutamate and for preventing chronic glutamate neurotoxicity
Additional file 2 of A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
Additional file 2. Table S1. Prioritised variants
Additional file 4 of A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
Additional file 4. Table S3. Experimentally validated branchpoints