14 research outputs found

    Ameloblastin peptides modulates the osteogenic capacity of human mesenchymal stem cells

    Get PDF
    During amelogenesis the extracellular enamel matrix protein AMBN is quickly processed into 17 kDa (N-terminus) and 23 kDa (C-terminus) fragments. In particular, alternatively spliced regions derived by exon 5/6 within the N-terminus region are known to be critical in biomineralization. Human mesenchymal stem cells (hMSC) also express and secrete AMBN, but it is unclear if this expression has effects on the hMSC themselves. If, as suggested from previous findings, AMBN act as a signaling molecule, such effects could influence hMSC growth and differentiation, as well as promoting the secretion of other signaling proteins like cytokines and chemokines. If AMBN is found to modulate stem cell behavior and fate, it will impact our understanding on how extracellular matrix molecules can have multiple roles during development ontogenesis, mineralization and healing of mesenchymal tissues. Here we show that synthetic peptides representing exon 5 promote hMSC proliferation. Interestingly, this effect is inhibited by the application of a 15 aa peptide representing the alternatively spliced start of exon 6. Both peptides also influence gene expression of RUNX2 and osteocalcin, and promote calcium deposition in cultures, indicating a positive influence on the osteogenic capacity of hMSC. We also show that the full-length AMBN-WT and N-terminus region enhance the secretion of RANTES, IP-10, and IL-8. In contrast, the AMBN C-terminus fragment and the exon 5 deleted AMBN (DelEx5) have no detectable effects on any of the parameters investigated. These findings suggest the signaling effect of AMBN is conveyed by processed products, whereas the effect on proliferation is differentially modulated through alternative splicing during gene expression

    Impact of particulate deproteinized bovine bone mineral and porous titanium granules on early stability and osseointegration of dental implants in narrow marginal circumferential bone defects

    No full text
    The use of two particulate bone graft substitute materials in experimental narrow marginal peri-implant bone defects was investigated with respect to early bone healing and implant stability. Porous titanium granules, oxidized white porous titanium granules (WPTG), and demineralized bovine bone mineral (DBBM) were characterized in vitro, after which the two latter materials were tested in experimental peri-implant bone defects in six minipigs, with empty defects as control. After mandibular premolar extraction, the top 5 mm of the alveoli were widened to 6 mm in diameter, followed by the placement of six implants, three on each side, in each pig. Six weeks of healing was allowed. The WPTG showed better mechanical properties. No significant differences in resonance frequency analysis were found directly after compacting or healing, and similar quantities of defect bone formation were observed on micro-computed tomography for all groups. Histomorphometric analysis demonstrated a more coronal bone-to-implant contact in the DBBM group, which also displayed more defect bone fill as compared to the WPTG group. The better mechanical properties observed for WPTG appear of negligible relevance for the early stability and osseointegration of implants

    Designing multigradient biomaterials for skin regeneration

    No full text
    Skin defects are amongst the main causes of morbidity and mortality worldwide, which account for significantly high socioeconomic costs. Today, much attention is being paid to tissue engineering and biomaterials strategies for skin regeneration, and among them, there is increasing interest in using multigradient biomaterials. Gradient-based approaches are an emerging trend in tissue engineering for the homogeneous delivery of therapeutic agents by using biomaterials. Several studies have acknowledged that wound repair mechanisms could be enhanced through biomimicking physicochemical properties of different skin layers. In addition, in different layers of skin tissue, cells experience various physicochemical gradients, which potentially regulate their behaviors. Therefore, interface tissue engineering and biomaterials approaches are gaining increasing attention for skin regeneration through the incorporation of physicochemical gradients within the engineered constructs. This review first presents a necessary overview of the biological properties of skin tissue and its changes during repair in different tissue injuries. Fundamental issues and necessities of using different types of gradient scaffolds and interface tissue engineering strategies for skin regeneration are addressed. The focus of this review is on describing current progress in designing gradient scaffolds for controlling and directing cellular and molecular responses in skin tissue. The main used fabrication approaches, including both traditional and advanced methods for designing multigradient scaffolds, are also discussed

    Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization

    Get PDF
    Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 µg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10-8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 µg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation

    Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    No full text
    Ameloblastin (AMBN), an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2) and protein kinase A (PKA) and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization

    Enhanced in vitro osteoblast differentiation on TiO2 scaffold coated with alginate hydrogel containing simvastatin

    Get PDF
    The aim of this study was to develop a three-dimensional porous bone graft material as vehicle for simvastatin delivery and to investigate its effect on primary human osteoblasts from three donors. Highly porous titanium dioxide (TiO2) scaffolds were submerged into simvastatin containing alginate solution. Microstructure of scaffolds, visualized by scanning electron microscopy and micro-computed tomography, revealed an evenly distributed alginate layer covering the surface of TiO2 scaffold struts. Progressive and sustained simvastatin release was observed for up to 19 days. No cytotoxic effects on osteoblasts were observed by scaffolds with simvastatin when compared to scaffolds without simvastatin. Expression of osteoblast markers (collagen type I alpha 1, alkaline phosphatase, bone morphogenetic protein 2, osteoprotegerin, vascular endothelial growth factor A and osteocalcin) was quantified using real-time reverse transcriptase–polymerase chain reaction. Secretion of osteoprotegerin, vascular endothelial growth factor A and osteocalcin was analysed by multiplex immunoassay (Luminex). The relative expression and secretion of osteocalcin was significantly increased by cells cultured on scaffolds with 10 μM simvastatin when compared to scaffolds without simvastatin after 21 days. In addition, secretion of vascular endothelial growth factor A was significantly enhanced from cells cultured on scaffolds with both 10 nM and 10 μM simvastatin when compared to scaffolds without simvastatin at day 21. In conclusion, the results indicate that simvastatin-coated TiO2 scaffolds can support a sustained release of simvastatin and induce osteoblast differentiation. The combination of the physical properties of TiO2 scaffolds with the osteogenic effect of simvastatin may represent a new strategy for bone regeneration in defects where immediate load is wanted or unavailable. Published Open Access with Sage Publication. Copyright 2013 The Authors

    Studies of dynamic binding of amino acids to TiO2 nanoparticle surfaces by Solution NMR and Molecular Dynamics Simulations

    No full text
    Adsorption of biomolecules onto material surfaces involves a potentially complex mechanism where molecular species interact to varying degrees with a heterogeneous material surface. Surface adsorption studies by atomic force microscopy (AFM), Sum Frequency Generation (SFG) spectroscopy, and solid state NMR (ssNMR), detect the structures and interactions of biomolecular species that are bound to material surfaces and which, in the absence of a solid liquid interface, do not exchange rapidly between surface-bound forms and free molecular species in bulk solution. Solution NMR has the potential to complement these techniques by detecting and studying transiently bound biomolecules at the liquid-solid interface. Herein we show that dark-state exchange saturation transfer (DEST) NMR experiments on gel-stabilized TiO2 nanoparticle (NP) samples detect several forms of biomolecular adsorption onto titanium (IV) oxide surfaces. Specifically, we use the DEST approach to study the interaction of amino acids arginine (Arg), lysine (Lys), leucine (Leu), alanine (Ala), and aspartic acid (Asp) with TiO2 rutile nanoparticle surfaces. Whereas Leu, Ala, and Asp display only a single weakly interacting form in the presence of TiO2 nanoparticles , Arg and Lys displayed at least two distinct bound forms: a species that is surface bound and retains a degree of reorientational motion, and a second more tightly bound form characterized by broadened DEST profiles upon addition of TiO2 nanoparticles. Molecular Dynamics simulations indicate different surface bound states for both Lys and Arg depending on the degree of TiO2 surface hydroxylation, but only a single bound state for Asp regardless of the degree of surface hydroxylation, in agreement with results obtained from analysis of DEST profiles

    An ameloblastin C-terminus variant is present in human adipose tissue

    No full text
    Objective: Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. Design: AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). Results: AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. Conclusions: The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development

    Solution blow spinning of highly deacetylated chitosan nanofiber scaffolds for dermal wound healing

    No full text
    Biocompatible fibrous scaffolds based on highly deacetylated chitosan were fabricated using high-throughput solution blow spinning. Scanning electron microscopy analysis revealed that the chitosan nanofiber scaffolds had ultrafine and continuous fibers (300–1200 nm) with highly interconnected porous structures (30–75% porosity), mimicking some aspects of the native extracellular matrix in skin tissue. Post-treatment of as-spun nanofibers with aqueous potassium carbonate solution resulted in a fibrous scaffold with a high chitosan content that retained its fibrous structural integrity for cell culture. Analysis of the mechanical properties of the chitosan nanofiber scaffolds in both dry and wet conditions showed that their strength and durability were sufficient for wound dressing applications. Significantly, the wet scaffold underwent remarkable elastic deformation during stretch such that the elongation at break dramatically increased to up to 44% of its original length, showing wavy fiber morphology near the break site. The culture of normal human dermal fibroblast cells onto scaffolds for 1–14 days demonstrated that the scaffolds were highly compatible and a suitable platform for cell adhesion, viability, and proliferation. Secretion profiles of wound healing-related proteins to the cell culture medium demonstrated that chitosan fibers were a promising scaffold for wound healing applications. Overall, the dense fibrous network with high porosity of the chitosan nanofiber scaffold and their mechanical properties indicate that they could be used to design and fabricate new materials that mimic the epidermis layer of natural skin
    corecore