7 research outputs found

    Metabolic effects of interleukin-6 in human splanchnic and adipose tissue

    No full text
    Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of ≈35 ng l−1. The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall and in the splanchnic tissues by the Fick principle after catheterizations of an artery, a subcutaneous vein draining adipose tissue, and a hepatic vein, and measurements of regional adipose tissue and splanchnic blood flows. In control studies without IL-6 infusion subcutaneous adipose tissue metabolism was studied by the same technique in eight healthy subjects. The net release of glycerol and fatty acids from the subcutaneous abdominal adipose tissue remained constant in the control experiment. IL-6 infusion gave rise to increase in net glycerol release in subcutaneous adipose tissue while the net release of fatty acids did not change significantly. In the splanchnic region IL-6 elicited a pronounced vasodilatation, and the uptake of fatty acids and the gluconeogenic precursors glycerol and lactate increased significantly. The splanchnic net output of glucose and triacylglycerol did not change during the IL-6 infusion. It is concluded that IL-6 elicits lipolytic effects in human adipose tissue in vivo, and that IL-6 also has effects on the splanchnic lipid and carbohydrate metabolism

    Compact, CO2-stabilized tuneable laser at 2.05 microns

    No full text
    We demonstrate a compact fibre-based laser system at 2.05 microns stabilized to a CO2 transition using frequency modulation spectroscopy of a gas-filled hollow-core fibre. The laser exhibits an absolute frequency accuracy of 5 MHz, a frequency stability noise floor of better than 7 kHz or 5e-11 and is tunable within +/-200 MHz from the molecular resonance frequency while retaining roughly this stability and accuracy.Comment: 10 pages, 8 figure

    Interleukin-6 production in human subcutaneous abdominal adipose tissue: the effect of exercise

    No full text
    The interleukin-6 (IL-6) output from subcutaneous, abdominal adipose tissue was studied in nine healthy subjects before, during and for 3 h after 1 h two-legged bicycle exercise at 60 % maximal oxygen consumption. Seven subjects were studied in control experiments without exercise. The adipose tissue IL-6 output was measured by direct Fick technique. An artery and a subcutaneous vein on the anterior abdominal wall were catheterized. Adipose tissue blood flow was measured using the 133Xe-washout method. In both studies there was a significant IL-6 output in the basal state and no significant change was observed during exercise. Post-exercise the IL-6 output began to increase after 30 min. Three hours post-exercise it was 58.6 ± 22.2 pg (100 g)−1 min−1. In the control experiments the IL-6 output also increased, but it only reached a level of 3.5 ± 0.8 pg (100 g)−1 min−1. The temporal profile of the post-exercise change in the IL-6 output closely resembles the changes in the outputs of glycerol and fatty acids, which we have described previously in the same adipose tissue depot. The difference is that it begins to increase ≈30 min before the glycerol and fatty acid outputs begin to increase. Thus, we suggest that the enhanced IL-6 production post-exercise in abdominal, subcutaneous adipose tissue may act locally via autocrine/paracrine mechanisms influencing lipolysis and fatty acid mobilization rate from this lipid depot
    corecore