19 research outputs found

    Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    Get PDF
    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8(+) tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens

    Conceptual design of the Cryogenic Electrical Feedboxes and the Superconducting Links of LHC

    No full text
    Powering the superconducting magnets of the LHC arcs and long straight sections is performed with more than 1000 electrical terminals supplying currents ranging from 120 A to 13’000 A and distributed in 44 cryogenic electrical feedboxes (DFB). Where space in the LHC tunnel is sufficient, the magnets are powered by locally installed cryogenic electrical feedboxes. Where there is no space for a DFB, the current will be supplied to the magnets by superconducting links (DSL) connecting the DFBs to the magnets on distances varying from 76 m to 510 m

    Design and Validation of Conditional Ligands for HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, and HLA-B*44:05

    No full text
    Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies

    No full text
    Treatment with the demethylating agent 5-Azacytidine leads to prolonged survival for patients with myelodysplastic syndrome, and the demethylation induces upregulation of cancer-testis antigens. Cancer-testis antigens are well-known targets for immune recognition in cancer, and the immune system may have a role in this treatment regimen. We show here that 5-Azacytidine treatment leads to increased T-cell recognition of tumor cells. T-cell responses against a large panel of cancer-testis antigens were detected before treatment, and these responses were further induced upon initiation of treatment. These characteristics point to an ideal combination of 5-Azacytidine and immune therapy to preferentially boost T-cell responses against cancer-testis antigens. To initiate such combination therapy, essential knowledge is required about the general immune modulatory effect of 5-Azacytidine. We therefore examined potential treatment effects on both immune stimulatory (CD8 and CD4 T cells and Natural Killer (NK) cells) and immune inhibitory cell subsets (myeloid-derived suppressor cells and regulatory T cells). We observed a minor decrease and modulation of NK cells, but for all other populations no effects could be detected. Together, these data support a strategy for combining 5-Azacytidine treatment with immune therapy for potential clinical benefit
    corecore