37 research outputs found

    The 11 March 2011 Tohoku tsunami wavefront mapping across offshore Southern California

    Get PDF
    The 11 March 2011 (M_w = 9.0) Tohoku tsunami was recorded by a temporary array of seafloor pressure gauges deployed off the coast of Southern California, demonstrating how dense array data can illustrate and empirically validate predictions of linear tsunami wave propagation characteristics. A noise cross-correlation method was used to first correct for the pressure gauge instrument phase response. Phase and group travel times were then measured for the first arrival in the pressure gauge tsunami waveforms filtered in narrow bands around 30 periods between 200 and 3000 s. For each period, phase velocities were estimated across the pressure gauge array based on the phase travel time gradient using eikonal tomography. Clear correlation was observed between the phase velocity and long-wavelength bathymetry variations where fast and slow velocities occurred for deep and shallow water regions, respectively. In particular, velocity gradients are pronounced at the Patton Escarpment and near island plateaus due to the abrupt bathymetry change. In the deep open ocean area, clear phase velocity dispersion is observed. Comparison with numerically calculated tsunami waveforms validates the approach and provides an independent measure of the finite-frequency effect on phase velocities at long periods

    Wave attenuation in mangrove forests; field data obtained in Trang, Thailand

    Get PDF
    Mangroves thrive in sheltered intertidal areas in the tropics and sub-tropics. Due to this position at the interface between land and sea, mangroves play an important role in the attenuation of waves. Dissipation of wave energy in mangrove forests is an interesting feature from the viewpoint of coastal protection. Nevertheless, field data are sparse and modeling attempts reveal the need for additional data. This paper presents the results of an extensive field campaign, lasting 6 months, in mangroves along the Andaman coast of Trang Province in southern Thailand. Wave attenuation has been studied along two contrasting transects with different elevation and vegetation characteristics and different orientations towards the Andaman Sea. Along the Kantang transect, which is mostly exposed to swell waves, vegetation densities increased from 4.5 to 9.3 volume-‰ along the transect and on average 63% of the incident wave energy was attenuated over a distance of 246 m. Along the Palian transect, mostly exposed to sea waves instead, vegetation increased from 4.3 to 19 volume-‰ and 72% of the incident wave energy was attenuated over this 98 m transect. It was found that standardized wave attenuation correlates well with incident wave energy, when attenuation is analyzed per vegetation zone. Energy reduction rates of these zones, defined by the gradient of the correlations between the standardized wave attenuation and incident wave energy, are found to increase significantly with vegetation density. Consistently, wave reduction rates, expressing the gradient of the correlation between wave height reduction and incident wave heights, are found to be 0.001-0.014 for the study sites and also show a significant and increasing trend with vegetation densities

    Suspended and bedload transport in the surfzone : implications for sand transport models

    Get PDF
    ACKNOWLEDGMENTS The research presented in this paper is conducted within the SINBAD project, funded by STW (12058) and EPSRC (EP/J00507X/1, EP/J005541/1), and received additional funding through the European Community’s FP7 project Hydralab IV (contract no. 261520).Publisher PD

    OMAE2003-37087 MULTI-LAYER MODELING OF WAVE GROUPS FROM DEEP TO SHALLOW WATER

    Get PDF
    ABSTRACT A set of model equations for water wave propagation is derived by piecewise integration of the primitive equations of motion through N arbitrary layers. Within each layer, an independent velocity profile is determined. With N separate velocity profiles, matched at the interfaces of the layers, the resulting set of equations have N+1 free parameters, allowing for an optimization with known analytical properties of water waves. The optimized two-layer model equations show good linear wave characteristics up to kh ≈8, while the second-order nonlinear behavior is well captured to kh ≈6. The three-layer model shows good linear accuracy to kh ≈14, and the four layer to kh ≈20. A numerical algorithm for solving the model equations is developed and tested against nonlinear deep-water wave-group experiments, where the kh of the carrier wave in deep water is around 6. The experiments are set up such that the wave groups, initially in deep water, propagate up a constant slope until reaching shallow water. The overall comparison between the multi-layer model and the experiment is quite good, indicating that the multilayer theory has good nonlinear, as well has linear, accuracy for deep-water waves. Introduction The past decade saw the advent and wide spread applications of Boussinesq-type equation models for studying water wave propagation in one and two horizontal dimensions. This depthintegrated modeling approach employs a polynomial approxima

    A MULTI-LAYER APPROACH TO MODELING GENERATION, PROPAGATION, AND INTERACTION OF WATER WAVES

    No full text
    A set of model equations is derived by piecewise integration of the primitive equa-tions of motion through an arbitrary number, N, of layers. Within each layer, an independent velocity profile is determined. With N separate velocity profiles, matched at the arbitrary interface of the layers, the resulting set of equations will have 2N-1 free parameters, allowing for an optimization with known analytical properties of water waves. The one- and two-layer models are examined in-depth in this thesis. The one-layer model is equivalent to the well-studied ”extended” Boussinesq model, which is accurate up to kh=3. The optimized two-layer model shows good linear behavior up to a kh of 8, while second-order nonlinear behavior is well-captured to kh values near 6. A high-order, predictor-corrector, finite-difference numerical algorithm is de-veloped for the one- and two-layer models. Included in this numerical code is a parameterization of wave breaking and bottom friction, as well as a moving boundary scheme to simulate wave runup and rundown. These aspects of the code are tested against analytic solutions and experiments, exhibiting satisfactory t

    Source Processes for the Probabilistic Assessment of Tsunami Hazards

    No full text
    The importance of tsunami hazard assessment has increased in recent years as a result of catastrophic consequences from events such as the 2004 Indian Ocean and 2011 Japan tsunamis. In particular, probabilistic tsunami hazard assessment (PTHA) methods have been emphasized to include all possible ways a tsunami could be generated. Owing to the scarcity of tsunami observations, a computational approach is used to define the hazard. This approach includes all relevant sources that may cause a tsunami to impact a site and all quantifiable uncertainty. Although only earthquakes were initially considered for PTHA, recent efforts have also attempted to include landslide tsunami sources. Including these sources into PTHA is considerably more difficult because of a general lack of information on relating landslide area and volume to mean return period. The large variety of failure types and rheologies associated with submarine landslides translates to considerable uncertainty in determining the efficiency of tsunami generation. Resolution of these and several other outstanding problems are described that will further advance PTHA methodologies leading to a more accurate understanding of tsunami hazard

    A two-layer approach to wave modelling

    No full text

    Analytical solutions for forced long waves on a sloping beach

    No full text
    corecore