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ABSTRACT tion of the vertical profile of the velocity field, thereby reducing

A set of model equations for water wave propagation is de- the dimensions of a three dimensional problem by one. The con-
rived by piecewise integration of the primitive equations of mo- ventional Boussinesq equations (Peregrine, 1967) and the gener-
tion throughN arbitrary layers. Within each layer, an indepen- alized Boussinesq equations of Wu (1981), which make use of
dent velocity profile is determined. Witlh separate velocity pro- a quadratic polynomial approximation for the vertical flow dis-
files, matched at the interfaces of the layers, the resulting set of tribution, have two major constraints: (1) The depth-averaged
equations havé&l+1 free parameters, allowing for an optimiza- model poorly describes the frequency dispersion of wave prop-
tion with known analytical properties of water waves. The opti- agation in intermediate depths, and (2) the weakly nonlinear as-
mized two-layer model equations show good linear wave charac- sumption limits the largest wave height that can accurately be
teristics up tdkh ~8, while the second-order nonlinear behavior modeled. These constraints are consistent with the fundamental
is well captured tdkh~6. The three-layer model shows good assumption of the Boussinesq equations, which states that lead-
linear accuracy tkh ~14, and the four layer t&kh ~20. A ing order dispersion and nonlinear effects are of the same order
numerical algorithm for solving the model equations is devel- and are weak, i.eQ(u2) = O(g,) < 1, wherey, = wavenum-
oped and tested against nonlinear deep-water wave-group experber times depthkh) ande, = amplitude over depthafh). The
iments, where th&h of the carrier wave in deep water is around dispersive properties of the conventional Boussinesq equations
6. The experiments are set up such that the wave groups, ini- have been improved by modifying the dispersive terms (Madsen
tially in deep water, propagate up a constant slope until reaching & Sorensen, 1992) or using a reference velocity at a specified
shallow water. The overall comparison between the multi-layer depth (Nwogu, 1993). These techniques yield a set of equations
model and the experiment is quite good, indicating that the multi- whose linear dispersion relation can be adjusted such that the re-
layer theory has good nonlinear, as well has linear, accuracy for sulting intermediate-depth dispersion characteristics are close to
deep-water waves. those of linear wave theory. Liu (1994) and Veé¢al. (1995) ex-

tended Nwogu’s approach to highly nonlinear waves, developing
models that not only can be applied to intermediate water depth
Introduction but also are capable of simulating wave propagation with strong

The past decade saw the advent and wide spread applicationshonlinear interaction, i.es, = O(1). In general, these model
of Boussinesg-type equation models for studying water wave equations contain accurate linear dispersion propertikh 103
propagation in one and two horizontal dimensions. This depth- (e.g. Nwogu, 1993). In intermediate depths, nonlinear proper-
integrated modeling approach employs a polynomial approxima- ties tend to exhibit larger relative errors than linear properties

(Madsen & Schffer, 1998), although additional enhancements

*Address all correspondence to this author. 1 Copyright © 2003 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use


https://core.ac.uk/display/357362177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can indeed create accurate nonlinear characteristics to near thespatial derivatives for more unknowns and lower spatial deriva-

linear accuracy limitkh~ 3 (Kennedyet al,, 2001).
Further enhancing the deep water accuracy of the depth-

tives.
In the first section of this paper, the derivation of Mwayer,

integrated approach is the so-called high-order Boussinesg-typedepth-integrated model is presented. Analysis of the model fol-
equations. While the model equations described in the previous lows, including examination of linear dispersion, shoaling, and
paragraph use a quadratic polynomial approximation for the ver- nonlinear properties. These properties are optimized, based on
tical flow distribution, these high-order models use fourth, and agreements with linear and Stokes wave theories, and it is shown
higher, order polynomial approximations. Golghial. (2000), that theN-layer model is accurate into deep water. Finally, a
using a fourth-order polynomial, developed a model with excel- numerical algorithm is developed for the general 2HD problem,
lent linear dispersive properties upkb= 6. Nonlinear behav- and numerical solutions are compared with experimental data for
ior was faithfully captured tdh ~ 3. With the drastic improve- deep water wave propagation. TNRelayer equation system ex-
ment in accuracy over previous model equations comes a sig- hibits significant improvement over previous models.
nificant computational increase as well. The fourth-order poly-
nomial employed results in fifth-order spatial derivatives in an
extremely complex equation system, requiring an equally com- 1 Governing Equations & Boundary Conditions
plex numerical scheme. Madsen & $dfer (1998) and Agnon The goal of this derivation is to formulate a set of equa-
et al. (1999) derived model equations with even higher order tjons by integrating the primitive equations of motion. The in-
polynomial approximations. The highest order of spatial differ- tegration will be performed piecewisely. As shown in Figure 1,
entiation in these model equations increases linearly with the or- /(x| v, t') denotes the free surface displacement of a wave train
der of polynomial approximation. Additionally, the complexity  propagating in the water depth(x, y', t'). The boundary be-
increases again for a two-horizontal dimension (2HD) problem, tween layers are given ag (X, y, t'). The system will be di-
for which no high-order modeling attempts have yet been made. vided intoN layers, where the upper and lower boundaries are
The reader is directed to Madsen & Sdfer (1998), a thorough given by r]i) = and r]’N = —I, respectively. All of the other
analysis of numerous different depth-integrated model equations, poundaries will be constructed a5 = aph’ + Brl’, whereay
for additional information. andp, are arbitrary and user defined. Note that btandZ’ are

In this paper, a different approach to obtaining a high-order, functions of time, and therefore sarj§. Each of theN layers has
depth-integrated model is taken. Instead of employing a high- a characteristic thicknesdy, as defined by Figure 1. Utilizing
order polynomial approximation for the vertical distribution of  the layer thicknessed, as the vertical length scales in the corre-
the flow field, N quadratic polynomials are used, matched at sponding layerdh, as the characteristic water depth, the charac-
an interface that divides the water column imNoayers. This teristic length of the wavé,=1/k as the horizontal length scale,
approach leads to a set of model equations without the high- ¢,/,/gh, as the time scale, and the characteristic wave ampli-
order spatial derivatives associated with high-order polynomial tudea, as the scale of wave motion, we can define the following
approximations. The multi-layer concept has been attempted dimensionless variables:
previously by Kanayamat al. (1998), although the derivation
and final model equations are quite different from those to be
presented here. Internal wave and stratified flow modelers often
employ a multi-layering concept, although the layers are always
layers of different density and thus represent a very dissimilar
physical problem than the one examined in this paper. Madsen
et al. (2002) developed a model, based on the method of Agnon
et al. (1999), accurate to extremely deep watdr£ 40). Their
derivation, fundamentally different from the one presented in this
paper, involves optimal expansions of the Laplace equation, al-
lowing for excellent deep water linear and nonlinear dispersive
properties of the resulting model. By using multiple expansions
at various levels in the water column, the deep water accuracy is
achieved while only requiring the fifth-order spatial derivatives
found in alternative high-order models with much smaller deep
water limitations. However, Madsegt al's model consists of
more equations than the alternative models, and thus more un-velocity components in the different layek&j, the vertical ve-
knowns. This is quite similar to the basic idea of the multi-layer locity component in the layers, arm the pressures. Note that
derivation presented here: to trade fewer unknowns and higher the subscript oz indicates that the vertical coordinate is scaled

X Y)= (X, ¥Y)/lo, Zn=2/cn, t=1/ghot' /Lo, Pn=Ph/PG0

h="h'/hy, {=0/ao, Nn=np/bn
(Un, Vi) = (Up, i)/ (%\/gTb) , Wa =W,/ [eolio\/gT'b} 1)

in which the subscripth indicates the layer indexh, = ao,
n
b, = z dm for n=11to N, (Un, Vi) represent the horizontal
m=1
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Figure 1. N-Layer problem setup.

differently in each layer.
introduced in (1), which are

€ = aO/hO; Ho = ho/go (2)

It is reiterated that, = 1/k, and thusyy=kh,. Assuming that

the viscous effects are insignificant, the wave motion can be de-
scribed by the continuity equation and the Euler’s equations, i.e.,

dn oW,

—0O-
ho Upn+—— oz =0 3)
ou ou,

Wn"‘soun OUn + enWh—— 2 = —0pn 4)

O, oW op

2 n n
Un - OW W, = 5
”“(at +&Un- n>+souonzn (azn sn) (5)

wherep, = dnho/lg, €n = @/dn, Un = (Up, Vi) denotes the hori-
zontal velocity vector, andl = (9/0x, d/dy) the horizontal gra-
dient vector.

On the free surface; = €1{(X, Yy, t) the usual kinematic and
dynamic boundary condition applies:

0
W1=EZ+80U1-DZ onz; = ¢ (6)

Dimensionless parameters have been

pr=0 onz =g (7)

Along the seafloorzy = ——h the kinematic boundary condi-
tion requires

1 0h h
Wh +Un - Dh+—a— 0, onzy =——>h (8)
oat dN

Atthe imaginary interface between the layers, continuity of pres-
sure and velocity is required:

b b
Pn=Pni1, ONZh=—"Nn, Zni1= ——Nn for n=1,N—1 (9)
dn dn+1

b
Un=Uns1, ONz,= d—"lnn forn=1,N—1
N+

(10)

bn _
dnnm Iny1 =

ﬁnn forn=1,N—1
dny1
(11)

For later use, we note here that the depth-integrated continu-
ity equation can be obtained by integrating (3) across each of the
layers. After applying the boundary conditions (10), (11), (6),
and (8), the resulting equation reads

b
Wh =Whi1, ONZy= d—“nn, Zni1 =
n

Z bn—lrlm1

Z e mﬂ: Undz| +

ton, o

— 12
g Ot ot (12)

We remark here that (12) is exact.

2 Approximate 2-HD Governing Equations
A perturbation analysis will be performed utilizing the as-
sumption
o) < 1. (13)

Using 12 as the small parameter, we can expand the dimension-
less physical variables as power serieg#pf

[

f=S MM (f

Furthermore, we will adopt the irrotationality assumption on
the vorticity field. With the above assumptions, the vertical pro-
file of vertical velocity is given as:

- Una\/\/thv pn) (14)

Wh = —2,S, — T+ O(2) (15)

Copyright © 2003 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



where +€op2 [(ug - OK1)OTy + K10 (U - OTa) 4 K1 (ug - Ok1)OS +

2
%D(Ul' DS:L)]'FSQH(Z) [TlDTl— <Z6Tl>:|
N-1
T1= 3 (g S g+ 0- (U + o 5 (16

and the horizontal velocity is expressed by:

2
Uy= unpﬁ{zz_zK” 0S,+ (ZKn)DTn} +o(y  @7)

2 h
redendn S (8- Fueos) | —opdd) 9
whereun (X, Y, Kn(X, ¥, t), t) is the horizontal velocity evaluated

atz=kn(x, ¥, t). _ _ Itis remarked here thabp2 = €112, and all coefficients are writ-
The exact continuity equation (12) can be rewritten approx- (e in terms ofy, ande, whenever possible. Determination of
imately in terms of( andun. Substituting (17) into (12), we  , for n = 2,N does not require solving additional momentum
obtain equations. With boundary condition (10) and the known velocity
profiles (17),u, can be explicitly given as a function of_1:

10h @ b b N
SRt DZ(“”nlh"”)un bR .
0 =
! n=1 , Kﬁ—(b&fﬂn—l) b1
Un + My > S+ Kn—Tnn—l UTh p =
n
by 3 bn 3 bn—
(Catnns) = (@m) " Cginna g |
6 2
by 2
2 Kno1— (dn M- 1)
Un—1+ M1 O0S-1+

(b&nlnn 1)2— (%2'%)2 B b1

bn
5 ( d, r]n—l—d*nnn)zn UTh

_|_

bn—
(Kn—l 4 r]n 1) DTn—l} +O(pﬁ—17|~¢) (20)
h_1

— O(pﬁ) (18) Thus, the lower layer velocities can be directly calculated with
knowledge of the upper layer velocity. Equations (18), (19), and
(20) are the coupled governing equations, written in terms, of
andd, for highly nonlinear, dispersive waves.

A question that arises with the use of the matched velocity
profiles in each layer is whether the vertical velocity gradients
are continuous across the layer boundary, which is not a directly
enforced boundary condition. If the gradients are not continuous,
there is a discontinuity of the nonlinear, vertical transport terms
in the horizontal and vertical Euler’s equations. Specifically, the
discontinuity would arise in thé&},(0U/0z,) term in (4) and the

Equation (18) is one of three governing equations¢f@and up,.

One of the remaining equations comes from the horizontal mo-
mentum equation, (4). To derive the governing equationsifpr

we first substitute (17) and the pressure expression (not shown
here) into (4) yields the following equation,

0
at +eou1 Du1+DZ+ulat{ lDSl+K1|:|T1}
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H2Wh(0Wh /0z,) term in (5). However, with calculation of these
nonlinear terms using the derived vertical velocity profiles, (15),
and horizontal velocity profiles, (17), it can readily be shown

12

1151

that the discontinuity is of the truncation error order in the final
model, i.e.

o @ ,’/ (©) @ -
aUn(Zn:%f]n) aUn+1(zn+1:%ilr]n) © 105 ! //// i
= +O(Kh, a 1) (21 T ©)
oz 9 (Hn, Mni1) (21) 1
b bn 095 é 1‘0 £5 2‘0 2‘5 3‘0 3‘5
,MWh(zo=gnn)  ,Mhi1(Zn1 = a5 Nn) ORI, )
p‘O azn - IJO aZn+1 UO“m l‘lol‘ln+1

(22)
Thus, the discontinuity of the nonlinear, vertical transport terms 12
will not effect the overall accuracy of the model.

1151

3 Accuracy of Multi-Layer Model

Through linear and nonlinear optimization of the interface
and velocity evaluation locations (see Lynett & Liu, 2003; Lynett
2002), it is shown that the two-layer model exhibits accurate lin-
ear characteristics up tokén =~ 8 and nonlinear accuracy ki ~
6. This is a greater than two-fold extension to higkbrover
existing O(12) Boussinesg-type models, while maintaining the o, ‘ ‘ ‘ ‘
maximum order of differentiation at three. A less thorough op- ° 10 1 - » % »
timization of the three- and four-layer models is undertaken, ex-
amining only phase and group velocity. This optimization indi-
cates that the three_layer mode| equations are accurbmd_S different models. Curve (1) is the [2,2] Pade properties used by some
and the four layer-model tkh ~ 25. Figure 2 summarizes the Boussinesq models, (2) is the [4,4] Pade of the high-order Boussinesq
results from this chapter. This figure gives the phase and group model, (3) is the two-layer model, (4) is the three-layer model, and (5) is
velocity for the two-, three-, and four-layer models, as well as the four-layer model.
the traditional and high-order Boussinesq models.

11r-

linear

j=2}
o
81051

Figure 2. Comparison of wave speed and group velocity for numerous

5 Experimental Setup

4 Numerical Solutions The preliminary experiments were conducted in Hydraulic

The numerical model employed here is identical to that de- Laboratory of National Cheng-Kung University of Taiwan. Fig-
scribed in Lynett & Liu (2003), which has its foundations in the ~ ure 3 shows the schematic diagram of the setup used in this study.
high-order model presented by Wei & Kirby (1995). The numer- The wave flume is approximately 300 m long, 5m wide and 5 m
ical time-marching scheme is a fourth-order, implicit predictor- deep, and the experiments were conducted with a water depth of
corrector method. The spatial derivatives are finite differenced to 3-5m. The arrangement of 39 wave-gauges is shown in Fig. 3.
fourth-order accuracy. No filtering or other artificial numerical 1he waves were generated with a piston-type wave maker. The
dissipation is utilized. As the equation form of the presented two- INPut signal consists of two wave components, linearly superim-
layer model is identical to th®(p2) Boussinesg-type equations, posed, with periods of 1.45 and 1.75 seconds. Each of the two
the numerical details, such as convergence criteria, are identicalcomponents has an amplitude of 0ra6
to those given in Weet al. (1995) and Lynett & Liu (2002).
For all of the numerical simulations presented in this paper, the
lateral boundaries are modeled as absorbing boundaries through6 Numerical Comparisons with Experimental Data
the use of sponge layers. The sponge layers are applied for both  Figures 4 and 5 show the numerical results plotted with the
the one- and two-layer models as recommended by Ketigl. experimental data for four locations along the tank. In Fig. 4
(1998), which is an approach founded on the method presentedare two locations nearer to the wavemaker, at distances of 15 and
by Israeli & Orszag (1981). 55mfrom the left boundary. Note that the wavelength of the car-
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Figure 3. Experimental wave flume setup.
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