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ABSTRACT
A set of model equations for water wave propagation is d

rived by piecewise integration of the primitive equations of mo
tion throughN arbitrary layers. Within each layer, an indepen
dent velocity profile is determined. WithN separate velocity pro-
files, matched at the interfaces of the layers, the resulting set
equations haveN+1 free parameters, allowing for an optimiza
tion with known analytical properties of water waves. The opt
mized two-layer model equations show good linear wave chara
teristics up tokh≈8, while the second-order nonlinear behavio
is well captured tokh≈6. The three-layer model shows good
linear accuracy tokh≈14, and the four layer tokh≈20. A
numerical algorithm for solving the model equations is deve
oped and tested against nonlinear deep-water wave-group ex
iments, where thekh of the carrier wave in deep water is around
6. The experiments are set up such that the wave groups,
tially in deep water, propagate up a constant slope until reach
shallow water. The overall comparison between the multi-lay
model and the experiment is quite good, indicating that the mul
layer theory has good nonlinear, as well has linear, accuracy
deep-water waves.

Introduction
The past decade saw the advent and wide spread applicati

of Boussinesq-type equation models for studying water wa
propagation in one and two horizontal dimensions. This dept
integrated modeling approach employs a polynomial approxim
∗Address all correspondence to this author.
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tion of the vertical profile of the velocity field, thereby reducing
the dimensions of a three dimensional problem by one. The con
ventional Boussinesq equations (Peregrine, 1967) and the gen
alized Boussinesq equations of Wu (1981), which make use o
a quadratic polynomial approximation for the vertical flow dis-
tribution, have two major constraints: (1) The depth-averaged
model poorly describes the frequency dispersion of wave prop
agation in intermediate depths, and (2) the weakly nonlinear as
sumption limits the largest wave height that can accurately b
modeled. These constraints are consistent with the fundament
assumption of the Boussinesq equations, which states that lea
ing order dispersion and nonlinear effects are of the same ord
and are weak, i.e.,O(µ2

o) = O(εo) ¿ 1, whereµo = wavenum-
ber times depth (kh) andεo = amplitude over depth (a/h). The
dispersive properties of the conventional Boussinesq equation
have been improved by modifying the dispersive terms (Madse
& Sorensen, 1992) or using a reference velocity at a specifie
depth (Nwogu, 1993). These techniques yield a set of equation
whose linear dispersion relation can be adjusted such that the r
sulting intermediate-depth dispersion characteristics are close
those of linear wave theory. Liu (1994) and Weiet al. (1995) ex-
tended Nwogu’s approach to highly nonlinear waves, developin
models that not only can be applied to intermediate water dept
but also are capable of simulating wave propagation with stron
nonlinear interaction, i.e.εo = O(1). In general, these model
equations contain accurate linear dispersion properties tokh≈ 3
(e.g. Nwogu, 1993). In intermediate depths, nonlinear proper
ties tend to exhibit larger relative errors than linear properties
(Madsen & Sch

..
affer, 1998), although additional enhancements
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can indeed create accurate nonlinear characteristics to near
linear accuracy limit,kh≈ 3 (Kennedyet al., 2001).

Further enhancing the deep water accuracy of the dep
integrated approach is the so-called high-order Boussinesq-ty
equations. While the model equations described in the previo
paragraph use a quadratic polynomial approximation for the ve
tical flow distribution, these high-order models use fourth, an
higher, order polynomial approximations. Gobbiet al. (2000),
using a fourth-order polynomial, developed a model with exce
lent linear dispersive properties up tokh≈ 6. Nonlinear behav-
ior was faithfully captured tokh≈ 3. With the drastic improve-
ment in accuracy over previous model equations comes a s
nificant computational increase as well. The fourth-order poly
nomial employed results in fifth-order spatial derivatives in a
extremely complex equation system, requiring an equally com
plex numerical scheme. Madsen & Sch

..
affer (1998) and Agnon

et al. (1999) derived model equations with even higher orde
polynomial approximations. The highest order of spatial differ
entiation in these model equations increases linearly with the o
der of polynomial approximation. Additionally, the complexity
increases again for a two-horizontal dimension (2HD) problem
for which no high-order modeling attempts have yet been mad
The reader is directed to Madsen & Sch

..
affer (1998), a thorough

analysis of numerous different depth-integrated model equation
for additional information.

In this paper, a different approach to obtaining a high-orde
depth-integrated model is taken. Instead of employing a hig
order polynomial approximation for the vertical distribution of
the flow field, N quadratic polynomials are used, matched a
an interface that divides the water column intoN layers. This
approach leads to a set of model equations without the hig
order spatial derivatives associated with high-order polynomi
approximations. The multi-layer concept has been attempt
previously by Kanayamaet al. (1998), although the derivation
and final model equations are quite different from those to b
presented here. Internal wave and stratified flow modelers oft
employ a multi-layering concept, although the layers are alwa
layers of different density and thus represent a very dissimil
physical problem than the one examined in this paper. Mads
et al. (2002) developed a model, based on the method of Agno
et al. (1999), accurate to extremely deep water (kh≈ 40). Their
derivation, fundamentally different from the one presented in th
paper, involves optimal expansions of the Laplace equation,
lowing for excellent deep water linear and nonlinear dispersiv
properties of the resulting model. By using multiple expansion
at various levels in the water column, the deep water accuracy
achieved while only requiring the fifth-order spatial derivative
found in alternative high-order models with much smaller dee
water limitations. However, Madsenet al.’s model consists of
more equations than the alternative models, and thus more u
knowns. This is quite similar to the basic idea of the multi-laye
derivation presented here: to trade fewer unknowns and high
2

loaded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Us
the

th-
pe
us
r-
d

l-

ig-
-

n
-

r
-
r-

,
e.

s,

r,
h-

t

h-
al
ed

e
en
ys
ar
en
n

is
al-
e
s
is

s
p

n-
r
er

spatial derivatives for more unknowns and lower spatial deriva-
tives.

In the first section of this paper, the derivation of theN-layer,
depth-integrated model is presented. Analysis of the model fol
lows, including examination of linear dispersion, shoaling, and
nonlinear properties. These properties are optimized, based o
agreements with linear and Stokes wave theories, and it is show
that theN-layer model is accurate into deep water. Finally, a
numerical algorithm is developed for the general 2HD problem,
and numerical solutions are compared with experimental data fo
deep water wave propagation. TheN-layer equation system ex-
hibits significant improvement over previous models.

1 Governing Equations & Boundary Conditions
The goal of this derivation is to formulate a set of equa-

tions by integrating the primitive equations of motion. The in-
tegration will be performed piecewisely. As shown in Figure 1,
ζ′(x′, y′, t ′) denotes the free surface displacement of a wave train
propagating in the water depthh′(x′, y′, t ′). The boundary be-
tween layers are given asη′n(x′, y′, t ′). The system will be di-
vided intoN layers, where the upper and lower boundaries are
given byη′o = ζ′ andη′N = −h′, respectively. All of the other
boundaries will be constructed asη′n = αnh′ + βnζ′, whereαn

andβn are arbitrary and user defined. Note that bothh′ andζ′ are
functions of time, and therefore so isη′n. Each of theN layers has
a characteristic thickness,dn, as defined by Figure 1. Utilizing
the layer thicknessesdn as the vertical length scales in the corre-
sponding layers,ho as the characteristic water depth, the charac-
teristic length of the wavèo=1/k as the horizontal length scale,
`o/
√

gho as the time scale, and the characteristic wave ampli
tudeao as the scale of wave motion, we can define the following
dimensionless variables:

(x, y) = (x′, y′)/`o, zn = z′/dn, t =
√

ghot
′/`o, pn = p′n/ρgao

h = h′/ho, ζ = ζ′/ao, ηn = η′n/bn

(Un, Vn) = (U ′
n, V ′

n)/
(

εo

√
gho

)
, Wn = W′

n/
[
εoµo

√
gho

]
(1)

in which the subscriptn indicates the layer index,bo = ao,

bn =
n

∑
m=1

dm for n = 1 to N, (Un,Vn) represent the horizontal

velocity components in the different layers,Wn the vertical ve-
locity component in the layers, andpn the pressures. Note that
the subscript onz indicates that the vertical coordinate is scaled
Copyright c© 2003 by ASME
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Figure 1. N-Layer problem setup.

differently in each layer. Dimensionless parameters have bee
introduced in (1), which are

εo = ao/ho, µo = ho/`o (2)

It is reiterated that̀ o = 1/k, and thusµo=kho. Assuming that
the viscous effects are insignificant, the wave motion can be de
scribed by the continuity equation and the Euler’s equations, i.e.

dn

ho
∇ ·Un +

∂Wn

∂zn
= 0 (3)

∂Un

∂t
+ εoUn ·∇Un + εnWn

∂Un

∂zn
=−∇pn (4)

µ2
n

(
∂Wn

∂t
+ εoUn ·∇Wn

)
+ εoµ2

oWn
∂Wn

∂zn
=−

(
∂pn

∂zn
+

1
εn

)
(5)

whereµn = dnho/l2
o, εn = ao/dn, Un = (Un,Vn) denotes the hori-

zontal velocity vector, and∇ = (∂/∂x, ∂/∂y) the horizontal gra-
dient vector.

On the free surface,z1 = ε1ζ(x, y, t) the usual kinematic and
dynamic boundary condition applies:

W1 =
∂ζ

+ εoU1 ·∇ζ onz1 = ε1ζ (6)

∂t

3

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: 
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Along the seafloor,zN = − ho
dN

h, the kinematic boundary condi-
tion requires

WN +UN ·∇h+
1
εo

∂h
∂t

= 0, onzN =− ho

dN
h (8)

At the imaginary interface between the layers, continuity of pres-
sure and velocity is required:

pn = pn+1, onzn =
bn

dn
ηn, zn+1 =

bn

dn+1
ηn for n= 1,N−1 (9)

Un = Un+1, onzn =
bn

dn
ηn, zn+1 =

bn

dn+1
ηn for n = 1,N−1

(10)

Wn = Wn+1, onzn =
bn

dn
ηn, zn+1 =

bn

dn+1
ηn for n = 1,N−1

(11)
For later use, we note here that the depth-integrated continu

ity equation can be obtained by integrating (3) across each of th
layers. After applying the boundary conditions (10), (11), (6),
and (8), the resulting equation reads

∇ ·
[

N

∑
n=1

dn

ho

Z bn−1
dn

ηn−1

bn
dn

ηn

Undz

]
+

1
εo

∂h
∂t

+
∂ζ
∂t

= 0 (12)

We remark here that (12) is exact.

2 Approximate 2-HD Governing Equations
A perturbation analysis will be performed utilizing the as-

sumption

O(µ2
n)¿ 1. (13)

Usingµ2
n as the small parameter, we can expand the dimension

less physical variables as power series ofµ2
n

f =
∞

∑
M=0

µ2M
n f [M]; ( f = Un,Wn,ζ, pn) (14)

Furthermore, we will adopt the irrotationality assumption on
the vorticity field. With the above assumptions, the vertical pro-
file of vertical velocity is given as:

Wn =−znSn−Tn +O(µ2
n) (15)
Copyright c© 2003 by ASME
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where

Sn =
dn

ho
∇ ·Un

Tn =
N−1

∑
m=n

ηm

(
bm

dm+1
Sm+1− bm

dm
Sm

)
+∇ · (hUN)+

1
εo

∂h
∂t

(16)

and the horizontal velocity is expressed by:

Un = un−µ2
n

{
z2−κ2

n

2
∇Sn +(z−κn)∇Tn

}
+O(µ4

n) (17)

whereun(x, y, κn(x, y, t), t) is the horizontal velocity evaluated
atz= κn(x, y, t).

The exact continuity equation (12) can be rewritten appro
imately in terms ofζ and un. Substituting (17) into (12), we
obtain

1
εo

∂h
∂t

+
∂ζ
∂t

+∇ ·
N

∑
n=1

(
bn−1

ho
ηn−1− bn

ho
ηn

)
un−∇ ·

N

∑
n=1

µ2
n
dn

ho








(
bn−1
dn

ηn−1

)3
−

(
bn
dn

ηn

)3

6
−

(bn−1
dn

ηn−1− bn
dn

ηn)z2
n

2


∇Sn

+




(
bn−1
dn

ηn−1

)2
−

(
bn
dn

ηn

)2

2
− (

bn−1

dn
ηn−1− bn

dn
ηn)zn


∇Tn





= O(µ4
n) (18)

Equation (18) is one of three governing equations forζ andun.
One of the remaining equations comes from the horizontal m
mentum equation, (4). To derive the governing equations foru1,
we first substitute (17) and the pressure expression (not sho
here) into (4) yields the following equation,

∂u1

∂t
+ εou1 ·∇u1 +∇ζ+µ2

1
∂
∂t

{
κ2

1

2
∇S1 +κ1∇T1

}

4
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+εoµ2
1 [(u1 ·∇κ1)∇T1 +κ1∇(u1 ·∇T1)+κ1(u1 ·∇κ1)∇S1+

κ2
1

2
∇(u1 ·∇S1)]+ εoµ2

o

[
T1∇T1−∇

(
ζ

∂T1

∂t

)]

+ε2
oµ2

o∇
(

ζS1T1− ho

d1

ζ2

2
∂S1

∂t
−ζu1 ·∇T1

)

+ε2
oε1µ2

o∇
[

ζ2

2

(
S2

1−
ho

d1
u1 ·∇S1

)]
= O

(
µ2

oµ2
1

)
(19)

It is remarked here thatεoµ2
o = ε1µ2

1, and all coefficients are writ-
ten in terms ofµo andεo whenever possible. Determination of
un for n = 2,N does not require solving additional momentum
equations. With boundary condition (10) and the known velocity
profiles (17),un can be explicitly given as a function ofun−1:

un +µ2
n





κ2
n−

(
bn−1
dn

ηn−1

)2

2
∇Sn +

(
κn− bn−1

dn
ηn−1

)
∇Tn





=

un−1 +µ2
n−1





κ2
n−1−

(
bn−1
dn−1

ηn−1

)2

2
∇Sn−1+

(
κn−1− bn−1

dn−1
ηn−1

)
∇Tn−1

}
+O(µ4

n−1,µ
4
n) (20)

Thus, the lower layer velocities can be directly calculated with
knowledge of the upper layer velocity. Equations (18), (19), an
(20) are the coupled governing equations, written in terms ofun

andζ, for highly nonlinear, dispersive waves.
A question that arises with the use of the matched velocit

profiles in each layer is whether the vertical velocity gradient
are continuous across the layer boundary, which is not a direct
enforced boundary condition. If the gradients are not continuou
there is a discontinuity of the nonlinear, vertical transport term
in the horizontal and vertical Euler’s equations. Specifically, th
discontinuity would arise in theWn(∂Un/∂zn) term in (4) and the
Copyright c© 2003 by ASME
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oWn(∂Wn/∂zn) term in (5). However, with calculation of these

nonlinear terms using the derived vertical velocity profiles, (15
and horizontal velocity profiles, (17), it can readily be show
that the discontinuity is of the truncation error order in the fina
model, i.e.

∂Un(zn = bn
dn

ηn)

∂zn
=

∂Un+1(zn+1 = bn
dn+1

ηn)

∂zn+1
+O(µ4

n,µ
4
n+1) (21)

µ2
o

∂Wn(zn = bn
dn

ηn)

∂zn
= µ2

o

∂Wn+1(zn+1 = bn
dn+1

ηn)

∂zn+1
+O(µ2

oµ2
n,µ

2
oµ2

n+1)

(22)
Thus, the discontinuity of the nonlinear, vertical transport term
will not effect the overall accuracy of the model.

3 Accuracy of Multi-Layer Model
Through linear and nonlinear optimization of the interfac

and velocity evaluation locations (see Lynett & Liu, 2003; Lyne
2002), it is shown that the two-layer model exhibits accurate li
ear characteristics up to akh≈ 8 and nonlinear accuracy tokh≈
6. This is a greater than two-fold extension to higherkh over
existingO(µ2

o) Boussinesq-type models, while maintaining th
maximum order of differentiation at three. A less thorough op
timization of the three- and four-layer models is undertaken, e
amining only phase and group velocity. This optimization ind
cates that the three-layer model equations are accurate tokh≈ 15
and the four layer-model tokh≈ 25. Figure 2 summarizes the
results from this chapter. This figure gives the phase and gro
velocity for the two-, three-, and four-layer models, as well a
the traditional and high-order Boussinesq models.

4 Numerical Solutions
The numerical model employed here is identical to that d

scribed in Lynett & Liu (2003), which has its foundations in the
high-order model presented by Wei & Kirby (1995). The nume
ical time-marching scheme is a fourth-order, implicit predicto
corrector method. The spatial derivatives are finite differenced
fourth-order accuracy. No filtering or other artificial numerica
dissipation is utilized. As the equation form of the presented tw
layer model is identical to theO(µ2

o) Boussinesq-type equations,
the numerical details, such as convergence criteria, are ident
to those given in Weiet al. (1995) and Lynett & Liu (2002).
For all of the numerical simulations presented in this paper, t
lateral boundaries are modeled as absorbing boundaries thro
the use of sponge layers. The sponge layers are applied for b
the one- and two-layer models as recommended by Kirbyet al.
(1998), which is an approach founded on the method presen
by Israeli & Orszag (1981).
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Figure 2. Comparison of wave speed and group velocity for numerous

different models. Curve (1) is the [2,2] Pade properties used by some

Boussinesq models, (2) is the [4,4] Pade of the high-order Boussinesq

model, (3) is the two-layer model, (4) is the three-layer model, and (5) is

the four-layer model.

5 Experimental Setup
The preliminary experiments were conducted in Hydraulic

Laboratory of National Cheng-Kung University of Taiwan. Fig-
ure 3 shows the schematic diagram of the setup used in this study
The wave flume is approximately 300 m long, 5m wide and 5 m
deep, and the experiments were conducted with a water depth of
3.5m. The arrangement of 39 wave-gauges is shown in Fig. 3.
The waves were generated with a piston-type wave maker. The
input signal consists of two wave components, linearly superim-
posed, with periods of 1.45 and 1.75 seconds. Each of the two
components has an amplitude of 0.06m.

6 Numerical Comparisons with Experimental Data
Figures 4 and 5 show the numerical results plotted with the

experimental data for four locations along the tank. In Fig. 4
are two locations nearer to the wavemaker, at distances of 15 and
55m from the left boundary. Note that the wavelength of the car-
Copyright c© 2003 by ASME
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rier wave is on average 4m over this range. As can be seen, the
preliminary data is somewhat noisy, but overall, the agreeme
between the experimental data and the numerics is quite goo
The numerical simulation appears to miss the high crests near
to the wavemaker, although the agreement increases as the w
train moves further away from the generation region. Looking to
Fig. 5, the numerical model is still in very good agreement at
distance of 115m from the wavemaker. It is not until much fur-
ther downstream, at a distance of 195m, the differences between
the numerical and experimental data are apparent. A phase sh
is evident, with the numerical model predicting a faster phase ve
locity. This comparison occurs at a distance of nearly 50 wave
lengths from the wavemaker, and accumulating numerical erro
may be the culprit.

7 Conclusions

A model for the transformation of highly nonlinear and dis-
persive waves is derived. The model utilizesN quadratic poly-
nomials to approximate the vertical flow field, matched along
an interface. Through linear and nonlinear optimization of the
interface and velocity evaluation locations, it is shown that th
two-layer model exhibits accurate linear characteristics up to
kh≈ 8 and nonlinear accuracy tokh≈6. This is a greater than
two-fold extension to higherkhover existingO(µ2

o) Boussinesq-
type models, while maintaining the maximum order of differen-
tiation at three. Owing to this maximum order of differentiation,
a tractable numerical algorithm can be developed for the ge
eral 2HD problem, employing a well-studied predictor-correcto
scheme. A set of preliminary wave group experiments have bee
performed at the National Cheng-Kung University of Taiwan and
are presented here. Through the comparison with deep wa
wave group evolution, for which deep water nonlinear behavio
is important, the multi-layer model is shown to be highly accu
rate. Some discrepancy between the experiment and numerics
found a fair distance from the wavemaker, and the experimen
are currently being re-done in order to record a cleaner, mo
precise dataset.
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