762 research outputs found

    Palomar 13: An Unusual Stellar System in the Galactic Halo

    Get PDF
    We have measured Keck/HIRES radial velocities for 30 candidate red giants in the direction of Palomar 13: an object traditionally cataloged as a compact, low-luminosity globular cluster. From a sample of 21 confirmed members, we find a systemic velocity of 24.1 km/s and a projected, intrinsic velocity dispersion of 2.2 km/s. Although small, this dispersion is several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, this dispersion implies a mass-to-light ratio of ~ 40 (in solar units) based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears to be anomalous among Galactic globular clusters -- depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of "extra-tidal" stars, or it is far more spatially extended than previously suspected. The full surface density profile is equally well-fit by a King-Michie model having a high concentration and large tidal radius, or by a NFW model. We examine -- and tentatively reject -- a number of possible explanations for the observed characteristics of Palomar 13 (e.g., velocity "jitter" among the red giants, spectroscopic binary stars, non-standard mass functions, modified Newtonian dynamics), and conclude that the two most plausible scenarios are either catastrophic heating during a recent perigalacticon passage, or the presence of a massive dark halo. Thus, the available evidence suggests that Palomar 13 is either a globular cluster which is now in the process of dissolving into the Galactic halo, or a faint, dark-matter-dominated stellar system (ABRIDGED).Comment: 31 pages, 13 postscript figures and 1 color gif image. Also available at http://www.physics.rutgers.edu/ast/ast-rap.html. Accepted for publication in the Astrophysical Journa

    Monster black holes

    Full text link
    A combination of ground-based and spacecraft observations has uncovered two black holes of 10 billion solar masses in the nearby Universe. The finding sheds light on how these cosmic monsters co-evolve with galaxies.Comment: 2 pages, 1 figure, LaTeX. Published in Nature "News & Views

    Bar-halo Friction in Galaxies I: Scaling Laws

    Full text link
    It has been known for some time that rotating bars in galaxies slow due to dynamical friction against the halo. However, recent attempts to use this process to place constraints on the dark matter density in galaxies and possibly also to drive dark matter out of the center have been challenged. This paper uses simplified numerical experiments to clarify several aspects of the friction mechanism. I explicitly demonstrate the Chandrasekhar scaling of the friction force with bar mass, halo density, and halo velocity dispersion. I present direct evidence that exchanges between the bar and halo orbits at major resonances are responsible for friction and study both individual orbits and the net changes at these resonances. I also show that friction alters the phase space density of particles in the vicinity of a major resonance, which is the reason the magnitude of the friction force depends on the prior evolution. I demonstrate that bar slow down can be captured correctly in simulations having modest spatial resolution and practicable numbers of particles. Subsequent papers in this series delineate the dark matter density that can be tolerated in halos of different density profiles.Comment: 15 pages, 13 figures, to appear in ApJ - major revisions from version

    Core Collapse via Coarse Dynamic Renormalization

    Full text link
    In the context of the recently developed "equation-free" approach to computer-assisted analysis of complex systems, we extract the self-similar solution describing core collapse of a stellar system from numerical experiments. The technique allows us to side-step the core "bounce" that occurs in direct N-body simulations due to the small-N correlations that develop in the late stages of collapse, and hence to follow the evolution well into the self-similar regime.Comment: 5 pages, 3 figure

    Growth and migration of solids in evolving protostellar disks I: Methods and Analytical tests

    Full text link
    This series of papers investigates the early stages of planet formation by modeling the evolution of the gas and solid content of protostellar disks from the early T Tauri phase until complete dispersal of the gas. In this first paper, I present a new set of simplified equations modeling the growth and migration of various species of grains in a gaseous protostellar disk evolving as a result of the combined effects of viscous accretion and photo-evaporation from the central star. Using the assumption that the grain size distribution function always maintains a power-law structure approximating the average outcome of the exact coagulation/shattering equation, the model focuses on the calculation of the growth rate of the largest grains only. The coupled evolution equations for the maximum grain size, the surface density of the gas and the surface density of solids are then presented and solved self-consistently using a standard 1+1 dimensional formalism. I show that the global evolution of solids is controlled by a leaky reservoir of small grains at large radii, and propose an empirically derived evolution equation for the total mass of solids, which can be used to estimate the total heavy element retention efficiency in the planet formation paradigm. Consistency with observation of the total mass of solids in the Minimum Solar Nebula augmented with the mass of the Oort cloud sets strong upper limit on the initial grain size distribution, as well as on the turbulent parameter \alphat. Detailed comparisons with SED observations are presented in a following paper.Comment: Submitted to ApJ. 23 pages and 13 figure

    A Prescription for Building the Milky Way's Halo from Disrupted Satellites

    Full text link
    We develop a semi-analytic method for determining the phase-space population of tidal debris along the orbit of a disrupting satellite galaxy and illustrate its use with a number of applications. We use this method to analyze Zhao's proposal that the microlensing events towards the Large Magellanic Cloud (LMC) might be explained by an appropriately placed tidal streamer, and find that his scenarios lead either to unacceptably high overdensities (10 -- 100%) in faint star counts (apparent magnitudes 17.5 -- 20.5) away from the Galactic plane or short timescales for the debris to disperse (10^8 years). We predict that the tidal streamers from the LMC and the Sagittarius dwarf galaxy currently extend over more than 2π2\pi in azimuth along their orbits. Assuming that each satellite has lost half of its primordial mass, we find that the streamers will have overdensities in faint star counts of 10 -- 100% and < 1% respectively, and conclude that this mass loss rate is unlikely for the LMC, but possible for Sagittarius. If the Galaxy has accreted one hundred 105106M10^5-10^6 M_{\odot} objects (comparable to its current population of globular clusters) at distances of 20 -- 100 kpc during its lifetime then 10% of the sky will now be covered by tidal streamers.Comment: 35 pages, LaTeX, 12 postscript figures included. Submitted to Ap

    Collapsing Layers on Schwarzschild-Lemaitre Geodesics

    Full text link
    We discuss Israel layers collapsing inward from rest at infinity along Schwarzschild-Lemaitre geodesics. The dynamics of the collapsing layer and its equation of state are developed. There is a general equation of state which is approximately polytropic in the limit of very low pressure. The equation of state establishes a new limit on the stress-density ratio.Comment: To appear in Phys. Rev. D 1

    Formation of Semi-relativisitc Jets from Magnetospheres of Accreting Neutron Stars: Injection of Hot Bubbles into a Magnetic Tower

    Full text link
    We present the results of 2.5-dimensional resistive magnetohydrodynamic (MHD) simulations of the magnetic interaction between a weakly magnetized neutron star and its accretion disk. General relativistic effects are simulated by using the pseudo-Newtonian potential. We find that well-collimated jets traveling along the rotation axis of the disk are formed by the following mechanism: (1) The magnetic loops connecting the neutron star and the disk are twisted due to the differential rotation between the neutron star and the disk. (2) Twist injection from the disk initiates expansion of the loop. (3) The expanding magnetic loops create a magnetic tower in which accelerated disk material travel as collimated bipolar jets. The propagation speed of the working surface of the jet is the order of 10% of the speed of light (0.1c\sim 0.1c). (4) Magnetic reconnection taking place inside the expanding magnetic loops injects hot bubbles intermittently into the magnetic tower. The ejection speed of the bubble is the order of the local Alfv\'{e}n speed of the launching point and 0.2c\sim 0.2c in our simulations. (5) The hot bubbles moving inside the tower catch up with the working surface of the jet. High energy electrons created by the magnetic reconnection are a plausible source of radio emission. Our model can explain the formation process of a narrow jet from a weakly magnetized (|{\boldmathB_{*}}|\le 10^{9} gauss) neutron star and the correlation between radio flares of the core and of the lobe observed in Sco X-1.Comment: 6 pages, 3 figures, to appear in ApJ, uses emulateapj.cls and apjfonts.sty. A paper with high-resolution figures and movies available at http://www2.yukawa.kyoto-u.ac.jp/~ykato/research

    Long-Lived Double-Barred Galaxies From Pseudo-Bulges

    Get PDF
    A large fraction of barred galaxies host secondary bars that are embedded in their large-scale primary counterparts. These are common also in gas poor early-type barred galaxies. The evolution of such double-barred galaxies is still not well understood, partly because of a lack of realistic NN-body models with which to study them. Here we report a new mechanism for generating such systems, namely the presence of rotating pseudo-bulges. We demonstate with high mass and force resolution collisionless NN-body simulations that long-lived secondary bars can form spontaneously without requiring gas, contrary to previous claims. We find that secondary bars rotate faster than primary ones. The rotation is not, however, rigid: the secondary bars pulsate, with their amplitude and pattern speed oscillating as they rotate through the primary bars. This self-consistent study supports previous work based on orbital analysis in the potential of two rigidly rotating bars. The pulsating nature of secondary bars may have important implications for understanding the central region of double-barred galaxies.Comment: Paper submitted to ApJ

    Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy

    Get PDF
    We have discovered 20 dwarf Cepheids (DC) in the Carina dSph galaxy from the analysis of individual CCD images obtained for a deep photometric study of the system. These short-period pulsating variable stars are by far the most distant (~100 kpc) and faintest (V ~ 23.0) DCs known. The Carina DCs obey a well-defined period-luminosity relation, allowing us to readily distinguish between overtone and fundamental pulsators in nearly every case. Unlike RR Lyr stars, the pulsation mode turns out to be uncorrelated with light-curve shape, nor do the overtone pulsators tend towards shorter periods compared to the fundamental pulsators. Using the period-luminosity (PL) relations from Nemec et al. (1994 AJ, 108, 222) and McNamara (1995, AJ, 109, 1751), we derive (m-M)_0 = 20.06 +/- 0.12, for E(B-V) = 0.025 and [Fe/H] = -2.0, in good agreement with recent, independent estimates of the distance/reddening of Carina. The error reflects the uncertainties in the DC distance scale, and in the metallicity and reddening of Carina. The frequency of DCs among upper main sequence stars in Carina is approximately 3%. The ratio of dwarf Cepheids to RR Lyr stars in Carina is 0.13 +/- 0.10, though this result is highly sensitive to the star-formation history of Carina and the evolution of the Horizontal Branch. We discuss how DCs may be useful to search effectively for substructure in the Galactic halo out to Galactocentric distances of ~100 kpc.Comment: 20 pages of text, 7 figure
    corecore