18,763 research outputs found

    Determination of the Equation of State of Dense Matter

    Full text link
    Nuclear collisions can compress nuclear matter to densities achieved within neutron stars and within core-collapse supernovae. These dense states of matter exist momentarily before expanding. We analyzed the flow of matter to extract pressures in excess of 10^34 pascals, the highest recorded under laboratory-controlled conditions. Using these analyses, we rule out strongly repulsive nuclear equations of state from relativistic mean field theory and weakly repulsive equations of state with phase transitions at densities less than three times that of stable nuclei, but not equations of state softened at higher densities because of a transformation to quark matter.Comment: 26 pages, 6 figures; final versio

    The Role and Influence of Teachers in Relation to Student Decision Making Regarding Jobs and Careers

    Get PDF
    Secondary schools in most parts of Australia now conduct work experience programmes which provide for student participation in normal conditions of work. Generally, work experience is now embedded within what is termed a \u27Transition Education\u27 programme, and usually includes elements of social studies, skills associated with job acquisition, and components designed to prepare the student for transition from school to wor

    Teaching Casual Random Blood Glucose Screening to Second-Year Dental Students

    Get PDF
    In our project, archived casual random blood glucose levels of second-year dental students who were taught the mechanics of self-testing were retrieved. Material data were analyzed by calculating means, medians, standard deviations, and ranges for 161 dental students screened by this casual and random self-monitoring of blood glucose levels as described by the American Diabetes Association’s 2008 Standards of Medical Care in Diabetes. Three types of data were assessed in this study. The first was the casual blood glucose levels of second-year dental students. The second was the data retrieved from student questionnaires regarding the value of teaching casual random blood glucose screening. The third was the U.S. dental schools’ responses regarding inclusion of casual blood glucose screening in their current curricula. Second-year dental students self-reported hypoglycemia in three instances and hyperglycemia in eight, based on current American Diabetes Association standards. Students agreed or strongly agreed that the value of teaching was informative (92.3 percent), beneficial (95 percent), and something that might be included in their practices (78.2 percent), with 19.2 percent being neutral on the inclusion. Only six U.S. dental schools reported teaching casual random glucose screening

    Chemical Trends in the Ice Springs Basalt, Black Rock Desert, Utah

    Get PDF
    The Holocene Ice Springs volcanic field of west-central Utah consists of 0.53 km3 of tholeitic basalts erupted as a sequence of nested cinder cones and associated lava flows. Whole rock x-ray fluorescence and atomic absorption analysis of ninety-six samples of known relative age document statistically significant inter- and intra- eruption chemical variations. Elemental trends include increases in Ti, Fe, Ca, P, and Sr and decreases in Si, K, Rb, Ni, Cr, and Zr with decreasing age. Microprobe analyses of microphenocrysts of olivine, plagioclase, and Fe-Ti oxides and of groundmass olivine, plagioclase, and clinopyroxene indicate limited chemical variation between mineral assemblages of the eruptive events. Petrographic analyses have identified the presence of minor amounts of silicic xenoliths, orthopyroxene megacrysts, and plagioclase xenocrysts. Potassium-argon determinations establish the existence of excess argon in the basaltic cinder (30.05 x 10 -12 moles/gm) and in distal lava flows (8.29 x 10 -12 moles/gm) which suggest apparent ages of 16 and 4.3 million years respectively. Strontium isotopic data (Puskar and Condie, 1973) show systematic variations from oldest eruptions (87Sr/86Sr=0.7052) to youngest eruptions (87Sr/86Sr=0.7059). Theoretical evaluation of observed major element, trace element, isotopic, and thermophysical properties of the lavas and cinders limits the importance of proposed magmatic differentation processes. The data are compatible with model involving crystal fractionation, crustal assimilation, and magma mixing. Initial modification of mantle derived melts resulted from olivine fractionation at depth. Subsequent combination of 6 to 8% fractionation of plagioclase, minor olivine, and magnetite at shallow depths, less than one percent assimilation of silicic crustal basement rocks, and interaction of compositionally similar magma pulses explains the overall inter-eruption chemical trends. The intra-eruption variations follow the overall trends and a similar combination of processes of lesser magnitude accounts for the intra-eruption variations

    Constraints on the density dependence of the symmetry energy

    Full text link
    Collisions involving 112Sn and 124Sn nuclei have been simulated with the improved Quantum Molecular Dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at sub-normal density are obtained. Results from present work are compared to constraints put forward in other recent analysis.Comment: 8 pages, 4 figures,accepted for publication in Phy. Rev. Let

    Nuclear isotope thermometry

    Get PDF
    We discuss different aspects which could influence temperatures deduced from experimental isotopic yields in the multifragmentation process. It is shown that fluctuations due to the finite size of the system and distortions due to the decay of hot primary fragments conspire to blur the temperature determination in multifragmentation reactions. These facts suggest that caloric curves obtained through isotope thermometers, which were taken as evidence for a first-order phase transition in nuclear matter, should be investigated very carefully.Comment: 9 pages, 7 figure

    Root anatomical traits contribute to deeper rooting of maize under compacted field conditions

    Get PDF
    © The Author(s) 2020. To better understand the role of root anatomy in regulating plant adaptation to soil mechanical impedance, 12 maize lines were evaluated in two soils with and without compaction treatments under field conditions. Penetrometer resistance was 1–2 MPa greater in the surface 30 cm of the compacted plots at a water content of 17–20% (v/v). Root thickening in response to compaction varied among genotypes and was negatively associated with rooting depth at one field site under non-compacted plots. Thickening was not associated with rooting depth on compacted plots. Genotypic variation in root anatomy was related to rooting depth. Deeper-rooting plants were associated with reduced cortical cell file number in combination with greater mid cortical cell area for node 3 roots. For node 4, roots with increased aerenchyma were deeper roots. A greater influence of anatomy on rooting depth was observed for the thinner root classes. We found no evidence that root thickening is related to deeper rooting in compacted soil; however, anatomical traits are important, especially for thinner root classes
    • …
    corecore