15 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    ACE gene polymorphism and losartan treatment in type 2 diabetic patients with nephropathy

    No full text
    Losartan treatment reduced renal outcomes in proteinuric patients with type 2 diabetes in the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) study. It is unknown whether an insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene predicts renal outcomes and death and influences the effect of losartan in these patients. Pharmacogenetic analyses were performed comparing losartan with placebo administered with conventional blood pressure-lowering therapy in 1435 (95%) of the 1513 RENAAL study patients. The primary endpoint was the composite of doubling of baseline serum creatinine concentration, end-stage renal disease (ESRD) or death. Cox regression models were stratified on baseline proteinuria and included treatment, geographic region, ACE/ID genotype, and treatment X genotype interaction. Within the placebo group, subjects with the ID or DID genotype were more likely than those with the 11 genotype to reach the composite endpoint (by 17.5% and 38.1%, respectively, P = 0.029) or its individual components. Within the losartan group, genotype did not correlate with reaching the composite endpoint. Compared with placebo, however, losartan reduced the risk of reaching the composite endpoint by 5.8% (95% confidence interval, -23.3, 28.0), 17.6% (3.8, 29.4), and 27.9% (7.0, 44.1) among those with the 11, ID, and DID genotypes, respectively. Similar trends were demonstrated for the individual endpoints. In conclusion, proteinuric type 2 diabetic patients with the D allele of the ACE gene have an unfavorable renal prognosis, which can be mitigated and even improved by losartan.</p

    ACE Gene Polymorphism and Losartan Treatment in Type 2 Diabetic Patients With Nephropathy

    No full text
    Losartan treatment reduced renal outcomes in proteinuric patients with type 2 diabetes in the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) study. It is unknown whether an insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene predicts renal outcomes and death and influences the effect of losartan in these patients. Pharmacogenetic analyses were performed comparing losartan with placebo administered with conventional blood pressure-lowering therapy in 1435 (95%) of the 1513 RENAAL study patients. The primary endpoint was the composite of doubling of baseline serum creatinine concentration, end-stage renal disease (ESRD) or death. Cox regression models were stratified on baseline proteinuria and included treatment, geographic region, ACE/ID genotype, and treatment × genotype interaction. Within the placebo group, subjects with the ID or DD genotype were more likely than those with the II genotype to reach the composite endpoint (by 17.5% and 38.1%, respectively, P = 0.029) or its individual components. Within the losartan group, genotype did not correlate with reaching the composite endpoint. Compared with placebo, however, losartan reduced the risk of reaching the composite endpoint by 5.8% (95% confidence interval, −23.3, 28.0), 17.6% (3.8, 29.4), and 27.9% (7.0, 44.1) among those with the II, ID, and DD genotypes, respectively. Similar trends were demonstrated for the individual endpoints. In conclusion, proteinuric type 2 diabetic patients with the D allele of the ACE gene have an unfavorable renal prognosis, which can be mitigated and even improved by losartan
    corecore