7 research outputs found

    Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage.

    Get PDF
    Mitochondrial complex I deficiency occurs in the substantia nigra of individuals with Parkinson's disease. It is generally believed that this phenomenon is caused by accumulating mitochondrial DNA damage in neurons and that it contributes to the process of neurodegeneration. We hypothesized that if these theories are correct, complex I deficiency should extend beyond the substantia nigra to other affected brain regions in Parkinson's disease and correlate tightly with neuronal mitochondrial DNA damage. To test our hypothesis, we employed a combination of semiquantitative immunohistochemical analyses, Western blot and activity measurements, to assess complex I quantity and function in multiple brain regions from an extensively characterized population-based cohort of idiopathic Parkinson's disease (n = 18) and gender and age matched healthy controls (n = 11). Mitochondrial DNA was assessed in single neurons from the same areas by real-time PCR. Immunohistochemistry showed that neuronal complex I deficiency occurs throughout the Parkinson's disease brain, including areas spared by the neurodegenerative process such as the cerebellum. Activity measurements in brain homogenate confirmed a moderate decrease of complex I function, whereas Western blot was less sensitive, detecting only a mild reduction, which did not reach statistical significance at the group level. With the exception of the substantia nigra, neuronal complex I loss showed no correlation with the load of somatic mitochondrial DNA damage. Interestingly, α-synuclein aggregation was less common in complex I deficient neurons in the substantia nigra. We show that neuronal complex I deficiency is a widespread phenomenon in the Parkinson's disease brain which, contrary to mainstream theory, does not follow the anatomical distribution of neurodegeneration and is not associated with the neuronal load of mitochondrial DNA mutation. Our findings suggest that complex I deficiency in Parkinson's disease can occur independently of mitochondrial DNA damage and may not have a pathogenic role in the neurodegenerative process

    Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy.

    No full text
    BACKGROUND:Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment. METHODS AND RESULTS:In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C). Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy. CONCLUSIONS:We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements

    Neuroimaging findings.

    No full text
    <p>A: axial T2 weighted MRI of patient 2 taken during an episode with seizures, increasing encephalopathy and exacerbation of the dystonia. Images show bilateral high T2-signal changes and swelling in the putamen and caudate head. In addition there are multiple cortical lesions preferentially occurring in the depths of sulci, which is typical of BBGD. B: axial T2 and coronal T2-FLAIR weighted MRI of patient 1 taken during an episodic exacerbation show a similar pattern with bilateral striatal and multiple cortical lesions. The signal abnormalities regressed completely on later scans (not shown). C (upper lane): FDG-PET scan of the brain of patient 1 taken ~5 years later shows multiple foci of decreased glucose metabolism that correlate to the localization of the transient cortical signal changes on MRI. The striatum shows minimal uptake consistent with severe neuronal loss. A normal scan is shown in the lower lane for comparison.</p

    Genetic and molecular findings.

    No full text
    <p>A: coverage analysis of whole-genome sequencing data in patient 3 shows a clear regional drop in sequencing depth (red line) corresponding to the 45,049 bp deletion in the 5’-UTR of the <i>SLC19A3</i> gene. The two arrows mark the position of the break-points. Coverage in the same region of a control is shown in the bottom lane for comparison. The blue diagram depicts the SLC19A3 gene in a 3’-5’ alignment. Vertical rectangulars show the proportional position of the exons. B: Western blot analysis in frontal cortex homogenate of patient 1 using two primary antibodies (left and right panel) shows an increase of SLC19A3 protein immunoreactivity in the patient (P) compared to two age and gender matched controls (C1, C2).</p
    corecore