119 research outputs found

    The aging epigenome: DNA methylation from the cradle to the grave

    Get PDF

    Nucleoside Drugs Induce Cellular Differentiation by Caspase-Dependent Degradation of Stem Cell Factors

    Get PDF
    BACKGROUND: Stem cell characteristics are an important feature of human cancer cells and play a major role in the therapy resistance of tumours. Strategies to target cancer stem cells are thus of major importance for cancer therapy. Differentiation therapy by nucleoside drugs represents an attractive approach for the elimination of cancer stem cells. However, even if it is generally assumed that the activity of these drugs is mediated by their ability to modulate epigenetic pathways, their precise mode of action remains to be established. We therefore analysed the potential of three nucleoside analogues to induce differentiation of the embryonic cancer stem cell line NTERA 2 D1 and compared their effect to the natural ligand retinoic acid. METHODOLOGY/PRINCIPAL FINDINGS: All nucleoside analogues analyzed, but not retinoic acid, triggered proteolytic degradation of the Polycomb group protein EZH2. Two of them, 3-Deazaneplanocin A (DZNep) and 2'-deoxy-5-azacytidine (decitabine), also induced a decrease in global DNA methylation. Nevertheless, only decitabine and 1beta-arabinofuranosylcytosine (cytarabine) effectively triggered neuronal differentiation of NT2 cells. We show that drug-induced differentiation, in contrast to retinoic acid induction, is caused by caspase activation, which mediates depletion of the stem cell factors NANOG and OCT4. Consistent with this observation, protein degradation and differentiation could be counteracted by co-treatment with caspase inhibitors or by depletion of CASPASE-3 and CASPASE-7 through dsRNA interference. In agreement with this, OCT4 was found to be a direct in-vitro-target of CASPASE-7. CONCLUSIONS/SIGNIFICANCE: We show that drug-induced differentiation is not a consequence of pharmacologic epigenetic modulation, but is induced by the degradation of stem-cell-specific proteins by caspases. Our results thus uncover a novel pathway that induces differentiation of embryonic cancer stem cells and is triggered by the established anticancer drugs cytarabine and decitabine. These findings suggest new approaches for directly targeting the stem cell fraction of human tumours

    Prospects & Overviews Epigenetic cancer therapy: Proof of concept and remaining challenges

    Get PDF
    Over the past few years several drugs that target epigenetic modifications have shown clinical benefits, thus seemingly validating epigenetic cancer therapy. More recently, however, it has become clear that these drugs are either characterized by low specificity or that their target enzymes have low substrate specificity. As such, clinical proof-of-concept for epigenetic cancer therapies remains to be established. Human cancers are characterized by widespread changes in their genomic DNA methylation and histone modification patterns. Epigenetic cancer therapy aims to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. In this review, we provide an overview about the known functional roles of DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases in cancer development. The available data identify several examples that warrant further consideration as drug targets. Future research should be directed toward targeted enzyme inhibition and toward exploring interactions between epigenetic pathways to maximize cancer specificity

    Signal Sequence Processing in Rough Microsomes

    Get PDF
    Secretory proteins are synthesized with a signal sequence that is usually cleaved from the nascent protein during the translocation of the polypeptide chain into the lumen of the endoplasmic reticulum. To determine the fate of a cleaved signal sequence, we used a synchronized in vitro translocation system. We found that the cleaved signal peptide of preprolactin is further processed close to its COOH terminus. The resulting fragment accumulated in the microsomal fraction and with time was released into the cytosol. Signal sequence cleavage and processing could be reproduced with reconstituted vesicles containing Sec61, signal recognition particle receptor, and signal peptidase complex

    Analysis of conditional gene deletion using probe based Real-Time PCR

    Get PDF
    Following publication of this article [1] the authors noticed that an incorrect probe reference was cited on page 3, 4, 5 and 6 ("UP #69, Roche Applied Science"). The correct probe that was used for the 1lox/2lox allele ratio analysis in the paper is as follow

    Array-based analysis of genomic DNA methylation patterns of the tumour suppressor gene p16(INK4A) promoter in colon carcinoma cell lines

    Get PDF
    Aberrant DNA methylation at CpG dinucleotides can result in epigenetic silencing of tumour suppressor genes and represents one of the earliest events in tumourigenesis. To date, however, high-throughput tools that are capable of surveying the methylation status of multiple gene promoters have been restricted to a limited number of cytosines. Here, we present an oligonucleotide microarray that permits the parallel analysis of the methylation status of individual cytosines, thus combining high throughput and high resolution. The approach was used to study the CpG island in the promoter region of the tumour suppressor gene p16(INK4A). In total, 876 oligonucleotide probes of 21 nt in length were used to inspect the methylation status of 53 CpG dinucleotides, producing correct signals in colorectal cancer cell lines as well as control samples with a defined methylation status. The information was validated by established alternative methods. The overall methylation pattern was consistent for each cell line, while different between them. At the level of individual cytosines, however, significant variations between individual cells of the same type were found, but also consistencies across the panel of cancer cell lines were observed

    Perceived socio-economic impacts of the marbled crayfish invasion in Madagascar

    Get PDF
    The negative environmental and economic impacts of many invasive species are well known. However, given the increased homogenization of global biota, and the difficulty of eradicating species once established, a balanced approach to considering the impacts of invasive species is needed. The marbled crayfish (Procambarus virginalis) is a parthenogenetic freshwater crayfish that was first observed in Madagascar around 2005 and has spread rapidly. We present the results of a socio-economic survey (n = 385) in three regions of Madagascar that vary in terms of when the marbled crayfish first arrived. Respondents generally considered marbled crayfish to have a negative impact on rice agriculture and fishing, however the animals were seen as making a positive contribution to household economy and food security. Regression modeling showed that respondents in regions with longer experience of marbled crayfish have more positive perceptions. Unsurprisingly, considering the perception that crayfish negatively impact rice agriculture, those not involved in crayfish harvesting and trading had more negative views towards the crayfish than those involved in crayfish-related activities. Food preference ranking and market surveys revealed the acceptance of marbled crayfish as a cheap source of animal protein; a clear positive in a country with widespread malnutrition. While data on biodiversity impacts of the marbled crayfish invasion in Madagascar are still completely lacking, this study provides insight into the socio-economic impacts of the dramatic spread of this unique invasive species. "Biby kely tsy fantam-piaviana, mahavelona fianakaviana" (a small animal coming from who knows where which supports the needs of the family). Government worker Analamanga, Madagascar

    Phylogeographic reconstruction of the marbled crayfish origin

    Get PDF
    The marbled crayfish (Procambarus virginalis) is a triploid and parthenogenetic freshwater crayfish species that has colonized diverse habitats around the world. Previous studies suggested that the clonal marbled crayfish population descended as recently as 25 years ago from a single specimen of P. fallax, the sexually reproducing parent species. However, the genetic, phylogeographic, and mechanistic origins of the species have remained enigmatic. We have now constructed a new genome assembly for P. virginalis to support a detailed phylogeographic analysis of the diploid parent species, Procambarus fallax. Our results strongly suggest that both parental haplotypes of P. virginalis were inherited from the Everglades subpopulation of P. fallax. Comprehensive whole-genome sequencing also detected triploid specimens in the same subpopulation, which either represent evolutionarily important intermediate genotypes or independent parthenogenetic lineages arising among the sexual parent population. Our findings thus clarify the geographic origin of the marbled crayfish and identify potential mechanisms of parthenogenetic speciation

    Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi

    Get PDF
    We have identified a DNA methyltransferase of the Dnmt2 family in Dictyostelium that was denominated DnmA. Expression of the dnmA gene is downregulated during the developmental cycle. Overall DNA methylation in Dictyostelium is ∼0.2% of the cytosine residues, which indicates its restriction to a limited set of genomic loci. Bisulfite sequencing of specific sites revealed that DnmA is responsible for methylation of mostly asymmetric C-residues in the retrotransposons DIRS-1 and Skipper. Disruption of the gene resulted in a loss of methylation and in increased transcription and mobilization of Skipper. Skipper transcription was also upregulated in strains that had genes encoding components of the RNA interference pathway disrupted. In contrast, DIRS-1 expression was not affected by a loss of DnmA but was strongly increased in strains that had the RNA-directed RNA polymerase gene rrpC disrupted. A large number of siRNAs were found that corresponded to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA modification. No siRNAs corresponding to the standard Skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene silencing in Dictyostelium but that different, partially overlapping mechanisms control transposon silencing

    The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes

    Get PDF
    Background: The parthenogenetic marbled crayfish (Procambarus virginalis) is a novel species that has rapidly invaded and colonized various different habitats. Adaptation to different environments appears to be independent of the selection of genetic variants, but epigenetic programming of the marbled crayfish genome remains to be understood. Results: Here, we provide a comprehensive analysis of DNA methylation in marbled crayfish. Whole-genome bisulfite sequencing of multiple replicates and different tissues revealed a methylation pattern that is characterized by gene body methylation of housekeeping genes. Interestingly, this pattern was largely tissue invariant, suggesting a function that is unrelated to cell fate specification. Indeed, integrative analysis of DNA methylation, chromatin accessibility and mRNA expression patterns revealed that gene body methylation correlated with limited chromatin accessibility and stable gene expression, while low-methylated genes often resided in chromatin with higher accessibility and showed increased expression variation. Interestingly, marbled crayfish also showed reduced gene body methylation and higher gene expression variability when compared with their noninvasive mother species, Procambarus fallax. Conclusions: Our results provide novel insights into invertebrate gene body methylation and its potential role in adaptive gene regulation
    corecore