423 research outputs found

    Droplet collision simulation by multi-speed lattice Boltzmann method

    No full text
    Realization of the Shan-Chen multiphase flow lattice Boltzmann model is considered in the framework of the higher-order Galilean invariant lattices. The present multiphase lattice Boltzmann model is used in two dimensional simulation of droplet collisions at high Weber numbers. Results are found to be in a good agreement with experimental findings

    Toward the automation of business process ontology generation

    Get PDF
    Semantic Business Process Management (SBPM) utilises semantic technologies (e.g., ontology) to model and query process representations. There are times in which such models must be reconstructed from existing textual documentation. In this scenario the automated generation of ontological models would be preferable, however current methods and technology are still not capable of automatically generating accurate semantic process models from textual descriptions. This research attempts to automate the process as much as possible by proposing a method that drives the transformation through the joint use of a foundational ontology and lexico-semantic analysis. The method is presented, demonstrated and evaluated. The original dataset represents 150 business activities related to the procurement processes of a case study company. As the evaluation shows, the proposed method can accurately map the linguistic patterns of the process descriptions to semantic patterns of the foundational ontology to a high level of accuracy, however further research is required in order to reduce the level of human intervention, expand the method so as to recognise further patterns of the foundational ontology and develop a tool to assist the business process modeller in the semi-automated generation of process models

    Multiphase cascaded lattice Boltzmann method

    Get PDF
    To improve the stability of the lattice Boltzmann method (LBM) at high Reynolds number the cascaded LBM has recently been introduced. As in the multiple relaxation time (MRT) method the cascaded LBM introduces additional relaxation times into the collision operator, but does so in a co-moving reference frame. This has been shown to significantly increase stability at low viscosity in the single phase case. Here the cascaded LBM is further developed to include multiphase flow. For this the force term is calculated by the interaction potential method, and introduced into the collision operator via the exact difference method (EDM). Comparisons are made with the lattice Bhatnagar–Gross–Krook (LBGK) method, and an MRT implementation. Both the cascaded and MRT methods are shown to significantly reduce spurious velocities over the LBGK method. For the particular case of the Shan–Chen interparticle force term calculation with the EDM, the cascaded LBM is successfully combined with a multiphase method, and shown to perform as well as the more established MRT method. The cascaded LBM is found to be a considerably improved approach to the simulation of multiphase flow over the LBGK, significantly increasing the stability range of both density ratio and Reynolds number. Additionally the importance of including third order velocity terms in the equilibria of both the cascaded and MRT methods is discussed

    Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers

    Get PDF
    A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community
    corecore