70 research outputs found

    RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma - a phase II study

    Get PDF
    BACKGROUND: Although Temozolomide is effective against glioblastoma, the prognosis remains dismal and new regimens with synergistic activity are sought for. METHODS: In this phase-I/II trial, pegylated liposomal doxorubicin (Caelyx, PEG-Dox) and prolonged administration of Temozolomide in addition to radiotherapy was investigated in 63 patients with newly diagnosed glioblastoma. In phase-I, PEG-Dox was administered in a 3-by-3 dose-escalation regimen. In phase-II, 20 mg/m2 PEG-Dox was given once prior to radiotherapy and on days 1 and 15 of each 28-day cycle starting 4 weeks after radiotherapy. Temozolomide was given in a dose of 75 mg/m2 daily during radiotherapy (60 Gy) and 150-200 mg/m2 on days 1-5 of each 28-day cycle for 12 cycles or until disease progression. RESULTS: The toxicity of the combination of PEG-Dox, prolonged administration of Temozolomide, and radiotherapy was tolerable. The progression free survival after 12 months (PFS-12) was 30.2%, the median overall survival was 17.6 months in all patients including the ones from Phase-I. None of the endpoints differed significantly from the EORTC26981/NCIC-CE.3 data in a post-hoc statistical comparison. CONCLUSION: Together, the investigated combination is tolerable and feasible. Neither the addition of PEG-Dox nor the prolonged administration of Temozolomide resulted in a meaningful improvement of the patient's outcome as compared to the EORTC26981/NCIC-CE.3 data

    Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine

    Get PDF
    Liposome and immunoliposome formulations of two vinca alkaloids, vincristine and vinblastine, were prepared using intraliposomal triethylammonium sucroseoctasulfate and examined for their ability to stabilize the drug for targeted drug delivery in vivo. The pharmacokinetics of both the encapsulated drug (vincristine or vinblastine) and liposomal carrier were examined in Sprague Dawley rats, and the in vivo drug release rates determined. Anti-HER2 immunoliposomal vincristine was prepared from a human anti-HER2/neu scFv and studied for targeted cytotoxic activity in cell culture, and antitumor efficacy in vivo. Nanoliposome formulations of vincristine and vinblastine demonstrated similar pharmacokinetic profiles for the liposomal carrier, but increased clearance for liposome encapsulated vinblastine (t 1/2 = 9.7 h) relative to vincristine (t 1/2 = 18.5 h). Immunoliposome formulations of vincristine targeted to HER2 using an anti-HER2 scFv antibody fragment displayed a marked enhancement in cytotoxicity when compared to non-targeted liposomal vincristine control; 63- or 253-fold for BT474 and SKBR3 breast cancer cells, respectively. Target-specific activity was also demonstrated in HER2-overexpressing human tumor xenografts, where the HER2-targeted formulation was significantly more efficacious than either free vincristine or non-targeted liposomal vincristine. These results demonstrate that active targeting of solid tumors with liposomal formulations of vincristine is possible when the resulting immunoliposomes are sufficiently stabilized

    A dose escalation and pharmacokinetic study of biweekly pegylated liposomal doxorubicin, paclitaxel and gemcitabine in patients with advanced solid tumours

    Get PDF
    To determine the maximum tolerated doses (MTDs) and dose-limiting toxicities (DLTs) of pegylated liposomal doxorubicin (PLD), paclitaxel (PCX) and gemcitabine (GEM) combination administered biweekly in patients with advanced solid tumours. Twenty-two patients with advanced-stage solid tumours were treated with escalated doses of PLD on day 1 and PCX plus GEM on day 2 (starting doses: 10, 100 and 800 mg m−2, respectively) every 2 weeks. DLTs and pharmacokinetic (PK) parameters of all drugs were determined during the first cycle of treatment. All but six (73%) patients had previously received at least one chemotherapy regimen. The DLT dose level was reached at PLD 12 mg m−2, PCX 110 mg m−2 and GEM 1000 mg m−2 with neutropaenia being the dose-limiting event. Of the 86 chemotherapy cycles delivered, grade 3 and 4 neutropaenia occurred in 20% with no cases of febrile neutropaenia. Non-haematological toxicities were mild. The recommended MTDs are PLD 12 mg m−2, PCX 100 mg m−2 and GEM 1000 mg m−2 administered every 2 weeks. The PK data revealed no obvious drug interactions. Biweekly administration of PLD, PCX and GEM is a well-tolerated chemotherapy regimen, which merits further evaluation in various types of solid tumours
    corecore