240 research outputs found

    Glassy Dynamics Under Superhigh Pressure

    Full text link
    Nearly all glass-forming liquids feature, along with the structural alpha-relaxation process, a faster secondary process (beta-relaxation), whose nature belongs to the great mysteries of glass physics. However, for some of these liquids, no well-pronounced secondary relaxation is observed. A prominent example is the archetypical glass-forming liquid glycerol. In the present work, by performing dielectric spectroscopy under superhigh pressures up to 6 GPa, we show that in glycerol a significant secondary relaxation peak appears in the dielectric loss at P > 3 GPa. We identify this beta-relaxation to be of Johari-Goldstein type and discuss its relation to the excess wing. We provide evidence for a smooth but significant increase of glass-transition temperature and fragility on increasing pressure.Comment: 5 pages, 5 figures, final version with minor changes according to referee demands and corrected Figs 1 and

    Pressure-induced amorphization, crystal-crystal transformations and the memory glass effect in interacting particles in two dimensions

    Full text link
    We study a model of interacting particles in two dimensions to address the relation between crystal-crystal transformations and pressure-induced amorphization. On increasing pressure at very low temperature, our model undergoes a martensitic crystal-crystal transformation. The characteristics of the resulting polycrystalline structure depend on defect density, compression rate, and nucleation and growth barriers. We find two different limiting cases. In one of them the martensite crystals, once nucleated, grow easily perpendicularly to the invariant interface, and the final structure contains large crystals of the different martensite variants. Upon decompression almost every atom returns to its original position, and the original crystal is fully recovered. In the second limiting case, after nucleation the growth of martensite crystals is inhibited by energetic barriers. The final morphology in this case is that of a polycrystal with a very small crystal size. This may be taken to be amorphous if we have only access (as experimentally may be the case) to the angularly averaged structure factor. However, this `X-ray amorphous' material is anisotropic, and this shows up upon decompression, when it recovers the original crystalline structure with an orientation correlated with the one it had prior to compression. The memory effect of this X-ray amorphous material is a natural consequence of the memory effect associated to the underlying martensitic transformation. We suggest that this kind of mechanism is present in many of the experimental observations of the memory glass effect, in which a crystal with the original orientation is recovered from an apparently amorphous sample when pressure is released.Comment: 13 pages, 13 figures, to be published in Phys. Rev.

    Two liquid states of matter: A new dynamic line on a phase diagram

    Full text link
    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\tau} ~ {\tau}0, where {\tau}is liquid relaxation time and {\tau}0 is the minimal period of transverse quasi-harmonic waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow, increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: it separates two liquid states at arbitrarily high pressure and temperature, and exists in systems where liquid - gas transition and the critical point are absent overall.Comment: 21 pages, 8 figure

    Observation of non-local dielectric relaxation in glycerol

    Full text link
    Since its introduction, liquid viscosity and relaxation time Ï„\tau have been considered to be an intrinsic property of the system that is essentially local in nature and therefore independent of system size. We perform dielectric relaxation experiments in glycerol, and find that this is the case at high temperature only. At low temperature, Ï„\tau increases with system size and becomes non-local. We discuss the origin of this effect in a picture based on liquid elasticity length, the length over which local relaxation events in a liquid interact via induced elastic waves, and find good agreement between experiment and theory

    Electrotransport and magnetic properies of Cr-GaSb spintronic materials synthesized under high pressure

    Full text link
    Electrotarnsport and magnetic properties of new phases in the system Cr-GaSb were studied. The samples were prepared by high-pressure (P=6-8 GPa) high-temperature treatment and identified by x-ray diffraction and scanning electron microscopy (SEM). One of the CrGa2_2Sb2_2 phases with an orthorhombic structure Iba2Iba2 has a combination of ferromagnetic and semiconductor properties and is potentially promising for spintronic applications. Another high-temperature phase is paramagnetic and identified as tetragonal I4/mcmI4/mcm

    Evaluation of the Effectiveness as to the Provision of Biological Safety of Works with Fixed Rabies Virus in the Process of Anti-Rabies Immunoglobulin Manufacturing

    Get PDF
    Analyzed is the performance of works with the strains of fixed rabies virus under the conditions of anti-rabies immunoglobulin manufacturing. Evaluated is the effectiveness of the established system for the provision of biological safety, which has allowed for safe manufacturing of anti-rabies immunoglobulin within the period of 12 years
    • …
    corecore