7 research outputs found

    Methyl-Ī±-D-glucopyranoside from Tulbaghia violacea extract induces apoptosis in vitro in cancer cells

    Get PDF
    Pro-apoptotic activity of Tulbghia violacea extracts was evaluated in order to understand the mechanisms of action that might be related to its traditional use as anticancer medicine. Apoptosis-guided purification was used to isolate active compound whose chemical structure was solved by using spectros-copic, microanalysis and X-ray crystallography techniques. T. violacea extract kills Chinese hamster ovary cells, MCF7, and HeLa cells through the induction of apoptosis Methyl-a-D-glucopyranoside was identified as one of the main pro-apoptotic compounds present in T. violacea extract. This is the first time ever demonstration that T. violacea contains methyl-a-D-glucopyranoside, which selectively kills cancer cells through apoptosis mechanisms

    Cassava Brown Streak Viruses express second 6-kilodalton (6K2) protein with varied polarity and three dimensional (3D) structures: Basis for trait discrepancy between the virus species

    Get PDF
    Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV) are the two among six virus species speculated to cause the most catastrophic Brown Streak Disease of Cassava (CBSD) in Africa and Asia. Cassava Brown Streak Virus (CBSV) is hard to breed resistance for compared to Ugandan Cassava Brown Streak Virus (UCBSV) species. This is exemplified by incidences of CBSV species rather than UCBSV species in elite breeding line, KBH 2006/0026 at Bagamoyo, Tanzania. It is not yet understood as to why CBSV species could breakdown CBSD-resistance in the KBH 2006/0026 unlike the UCBSV species. This marks the first in silico study conducted to understand molecular basis for the trait discrepancy between CBSV and UCBSV species from structural biology view point. Following ab initio modelling and analysis of physical-chemical properties of second 6-kilodalton (6K2) protein encoded by CBSV and UCBSV species, using ROBETTA server and Protein Parameters tool, respectively we report that; three dimensional (3D) structures and polarity of the protein differs significantly between the two virus species. (95% and 5%) and (85% and 15%) strains of 20 CBSV and 20 UCBSV species respectively, expressed the protein in homo-trimeric and homo-tetrameric forms, correspondingly. 95% and 85% of studied strain population of the two virus species expressed hydrophilic and hydrophobic 6K2, respectively. Based on findings of the curent study, we hypothesize that; (i) The hydrophilic 6K2 expressed by the CBSV species, favour its faster systemic movement via vascular tissues of cassava host and hence result into higher tissue titres than the UCBSV species encoding hydrophobic form of the protein. t and (ii) The hydrophilic 6K2 expressed byCBSV species have additional interaction advantage with Nuclear Inclusion b protease domain (NIb) and Viral genome-linked protein (VPg), components of Virus Replication Complex (VRC) and hence contributing to faster replication of viral genome than the hydrophobic 6K2 expressed by the UCBSV species. Experimental studies are needed to resolve the 3D structures of the 6K2, VPg and NIb and comprehend complex molecular interactions between them. We suggest that, the 6K2 gene should be targeted for improvement of RNA interference (RNAi)-directed transgenesis of virus-resistant cassava as a more effective way to control the CBSD besides breeding

    Long-term maize-Desmodium intercropping shifts structure and composition of soil microbiome with stronger impact on fungal communities

    Get PDF
    Purpose Push-pull is an intercropping technology that is rapidly spreading among smallholder farmers in Sub-Saharan Africa. The technology intercrops cereals with Desmodium to fight off stem borers, eliminate parasitic weeds, and improve soil fertility and yields of cereals. The above-ground components of push-pull cropping have been well investigated. However, the impact of the technology on the soil microbiome and the subsequent role of the microbiome on diverse ecosystem benefits are unknown. Here we describe the soil microbiome associated with maize-Desmodium intercropping in push-pull farming in comparison to long-term maize monoculture. Methods Soil samples were collected from long-term maize-Desmodium intercropping and maize monoculture plots at the international centre for insect physiology and ecology (ICIPE), Mbita, Kenya. Total DNA was extracted before16S rDNA and ITS sequencing and subsequent analysis on QIIME2 and R. Results Maize-Desmodium intercropping caused a strong divergence in the fungal microbiome, which was more diverse and species rich than monoculture plots. Fungal groups enriched in intercropping plots are linked to important ecosystem services, belonging to functional groups such as mycorrhiza, endophytes, saprophytes, decomposers and bioprotective fungi. Fewer fungal genera were enriched in monoculture plots, some of which were associated with plant pathogenesis and opportunistic infection in humans. In contrast, the impact of intercropping on soil bacterial communities was weak with few differences between intercropping and monoculture. Conclusion Maize-Desmodium intercropping diversifies fungal microbiomes and favors taxa associated with important ecosystem services including plant health, productivity and food safety

    Omics for bioprospecting and drug discovery from bacteria and microalgae

    No full text
    ā€œOmicsā€ represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and ā€˜blindā€™-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organismā€™s inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads
    corecore