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of the microbiome on diverse ecosystem benefits 
are unknown. Here we describe the soil microbiome 
associated with maize—Desmodium intercropping in 
push–pull farming in comparison to long-term maize 
monoculture.
Methods Soil samples were collected from long-
term maize—Desmodium intercropping and maize 
monoculture plots at the international centre for insect 
physiology and ecology (ICIPE), Mbita, Kenya. 
Total DNA was extracted before16S rDNA and ITS 
sequencing and subsequent analysis on QIIME2 and 
R.
Results Maize—Desmodium intercropping caused 
a strong divergence in the fungal microbiome, which 
was more diverse and species rich than monoculture 
plots. Fungal groups enriched in intercropping plots 
are linked to important ecosystem services, belonging 

Abstract 
Purpose Push–pull is an intercropping technol-
ogy that is rapidly spreading among smallholder 
farmers in  Sub-Saharan Africa. The technology 
intercrops cereals with Desmodium to fight off stem 
borers, eliminate parasitic weeds, and improve soil 
fertility and yields of cereals. The above-ground 
components of push–pull cropping have been well 
investigated. However, the impact of the technol-
ogy on the soil microbiome and the subsequent role 
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to functional groups such as mycorrhiza, endophytes, 
saprophytes, decomposers and bioprotective fungi. 
Fewer fungal genera were enriched in monoculture 
plots, some of which were associated with plant 
pathogenesis and opportunistic infection in humans. 
In contrast, the impact of intercropping on soil bac-
terial communities was weak with few differences 
between intercropping and monoculture.
Conclusion Maize—Desmodium intercropping 
diversifies fungal microbiomes and favors taxa asso-
ciated with important ecosystem services including 
plant health, productivity and food safety.

Keywords Soil microbiome · Push–pull farming · 
Intercropping microbiome · 16S · ITS · Desmodium 
spp

Introduction

Push–pull technology is an ecological habitat man-
agement strategy for the control of major pests of 
cereals, particularly maize and sorghum. Since its 
inception in the 90’s, the technology has spread to 
smallholder farmers across southern and eastern 
Africa who use it to manage stem-borers (Busseola 
fusca and Chilo partellus) and fall armyworm (Spo-
doptera frugiperda) attacks on cereal crops thus 
increasing yield (Midega et  al. 2018). The technol-
ogy exploits the chemical ecology of a leguminous 
intercrop belonging to the genus Desmodium, which 
‘pushes’ stem-boring insects from the main crop 
reportedly through its volatile compounds that sig-
nal an unfavourable egg-laying environment. At the 
same time, a grass trap crop such as Brachiaria spp. 
or Cenchrus purpureus, commonly known as napier 
grass, is planted as border vegetation to ‘pull’ the 
insects towards itself without supporting their devel-
opment (Khan et al. 2003, 2010).

Over the years several additional benefits of the 
Desmodium-based intercropping system have been 
uncovered and indicate diverse soil-based mecha-
nisms that warrant further study. Desmodium employs 
allelopathic mechanisms that dramatically reduce 
infestation of the parasitic weed Striga hermonthica 
to cereal crops, further adding to yield increases 
(Khan et al. 2002). Moreover, the technology provides 
other ecological benefits contributing to improved 
cereal crops yield, including nitrogen fixation by 

Desmodium, soil structure improvement and a mulch-
ing effect in the fields. Finally, the technology report-
edly reduced the incidence of human pathogenic fun-
gal toxins in maize kernels (Njeru et al. 2020; Owuor 
et  al. 2018). In addition, both Desmodium and the 
trap crops are a reliable source of animal fodder, par-
ticularly in drought periods, as farmers do not uproot 
them between farming seasons (Khan et  al. 2010). 
The overall impact is increased cereal yield with min-
imum chemical inputs. The technology is effective 
and, importantly, affordable for smallholder farmers 
in Sub-Saharan Africa.

Whereas the components of the cereal—Desmo-
dium push–pull farming system and their underlying 
mechanisms have been well investigated, one of the 
areas that has received no attention is its interaction 
with the soil microbiome. Intercropping is increas-
ingly adopted as a sustainable alternative to monocul-
ture production systems. The cropping practice pro-
vides diverse ecosystem services, some of which are 
immediate and pronounced (such as productivity, pol-
linator support, pest and disease reduction, nitrogen 
fixation (Bybee-Finley and Ryan 2018; Nourbakhsh 
et al. 2019), whereas others are acquired over a longer 
time. In push–pull cropping systems the effects on 
and impact of the soil microbiome fall in the latter 
category and have been, in part for that reason, little 
studied.

Soil microorganisms promote plant health and 
productivity through direct and indirect mecha-
nisms mediated through root systems (van der Hei-
jden et  al. 2008). Plants use their roots exudates to 
actively influence the microbial assemblages in the 
rhizosphere often favouring those that offer survival 
benefits (Liu et  al. 2021). Therefore, it is of inter-
est to explore the impact of maize—Desmodium on 
soil microbial profiles as the first step to understand 
their contribution on the effectiveness of the farming 
system. Microbiome studies are increasingly used to 
discern potential impacts of farming practices such 
as intercropping on abundance, structure and diver-
sity of soil microbiota, which in turn provide plants 
with other benefits such as higher mineral nutrients 
availability (Johansen & Jensen 1996; Tang et  al. 
2014). Studies in cereal—legume intercropping sys-
tems have shown changes in soil microbial struc-
tures as well as benefits on plants mediated by soil 
microbes. For instance, in a study by Li et al. (2018), 
an increase in yield as well as overall diversity of soil 
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bacteria was observed in maize—peanut intercrop-
ping systems. The study observed a higher abundance 
of beneficial soil bacteria in intercropping systems, 
where belowground interactions were either complete 
or partial when compared to monoculture. Increases 
in soil microbial biomass as well as nutrient availabil-
ity, especially N, P and C have been observed in mul-
tiple cereal—legume intercropping systems, such as 
that of wheat (Triticum aestivum), maize (Zea mays), 
and faba bean (Vicia faba) intercropping (Song et al. 
2007), and durum wheat (Triticum turgidum durum) 
intercropped with either chickpea (Cicer arietinum) 
or lentil (Lens culinaris) (Tang et al. 2014).

In that light, the current study compared the 
diversity of soil microorganisms between long-term 
maize—Desmodium and maize monoculture plots. 
Specifically, amplicon sequencing (16S rDNA and 
ITS) was used to investigate the differences in soil 
bacterial and fungal population structures between 
long-term maize—Desmodium intercropping and 
maize monoculture practices in a context of potential 
ecological benefits.

The mapping of the soil microbiomes demonstrated 
that the fungal microbiome was particularly diversi-
fied in maize—Desmodium intercropping plots com-
pared to maize monoculture plots. The results are 
discussed in the context of reported benefits around 
maize—Desmodium intercropping in push–pull farm-
ing by inferring known ecological functions of taxa 
contributing to the observed difference. This is the first 
step towards understanding soil microbial diversity in 
push–pull technology for optimal exploitation of their 
potential ecosystem benefits in plant health and pro-
ductivity. Further studies are recommended to discern 
key determinants of the observed differences and their 
importance in ecosystem (dis) services. Knowledge 
and translation of this knowledge into other cropping 
systems could advance sustainable food production 
through fostering belowground microbial communities 
that support plant health and productivity.

Methodology

Sampling site

To compare soil microbial profiles between maize 
monoculture and maize—Desmodium intercropping 

maize farming, we obtained soil samples from 
long-term (14–19  years old) experimental plots at 
the International Centre for Insect Physiology and 
Ecology (ICIPE), Mbita campus, Kenya (0°25.877 
S 34°12.425 E). The campus has clay-loam soil 
type, receives approximately 900 mm of rainfall per 
annum, has a mean annual temperature of 27 °C, and 
is located at an altitude of approximately 1200  m 
above sea level.

The samples were collected from three sets of 
plots established between 1998 and 2003. The first 
set of plots consisting of a maize monoculture and 
push–pull plots was established in 1998 (30  m by 
30  m). The plots had D. uncinatum (silver-leaf 
desmodium) as the intercrop while Sudan grass (Sor-
ghum sudanense) was the trap crop. The second set 
of plots was established in 1999 (6 × 6  m) to study 
the ability of Desmodium intercropping to suppress 
Striga. These plots were not surrounded by border/
trap crops but were separated from other plots by 2 m 
buffer spaces. The third set of plots was established 
in 2003 (5 × 6 m) to compare efficiency of food leg-
umes and Desmodium intortum (greenleaf desmo-
dium) intercrops in Striga suppression. Phosphorus, 
in the form of di-ammonium phosphate (DAP), was 
applied in each plot at planting at the rate of 60 kg/
ha. Nitrogen was applied after thinning of maize, in 
the form of calcium ammonium nitrate (CAN), at the 
rate of 60 kg/ha (Midega et al. 2014). The plots were 
also not surrounded by a border/trap crop but they 
were separated from other plots by 2 m buffer spaces. 
In the plots established in 1999 and 2003, only plots 
of maize monoculture and maize—Desmodium inter-
cropping were selected for sampling.

In all plots, maize (medium maturing commer-
cial hybrid 513 variety) was planted at a spacing of 
0.75  m between rows and 0.3  m within rows while 
Desmodium was planted through drilling method 
within a row. Plant population (maize) was therefore 
the same in any set of plots.

Soil sample collection

Soil samples were collected during the cool dry sea-
son in July 2017, when the maize was mature and 
just before harvesting. We collected seven samples 
from each site; four samples from maize monoculture 
and three from intercropped/push–pull plots. Each 
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individual sample was made up of three 15–18  cm 
deep soil cores that were collected from random spots 
in each selected plot away from the edges. For mono-
culture, sampling was done between rows of maize 
plots while in intercropped plots, it was done close 
to Desmodium spp. roots system (growing in rows 
between maize rows). Afterwards, each soil sample 
was homogenized and sieved through a 4  mm wire 
mesh. About 200 g of soil sub-sample was collected 
and stored at − 20 °C until further processing.

DNA extraction and sequencing

DNeasy Powersoil kit (Qiagen, Manchester, UK) was 
used for total DNA extraction from the soil samples 
following the manufacturer’s protocol. Briefly, 0.25 g 
soil was added to PowerBead Tubes containing a lysis 
buffer and vortexed for a few seconds. The resulting 
mixture was centrifuged at 10,000g for 30  s before 
discarding the pellet and centrifugation of the super-
natant in spin columns. Tris–HCl solution was used 
to wash off DNA from the spin column. A Nanodrop 
spectrophotometer and gel electrophoresis were 
used to assess the quality of the extracted DNA. The 
DNA samples were stored at − 20  °C until further 
processing.

DNA sequencing was done at Inqaba Biotechnical 
Industries (Pty) Ltd (Pretoria, South Africa). Prim-
ers targeting the V1-V3 region of 16S rDNA gene of 
the bacteria (27F and 518R primer pairs) were used 
to amplify DNA under the following PCR conditions: 
initial denaturation at 95  °C for 2  min, followed by 
30 cycles of denaturation at 95  °C for 30  s, primer 
annealing at 60 °C for 30 s, and extension at 72 °C for 
30 s, with a final elongation at 72 °C for 5 min. For 
fungi, ITS1F and ITS2 primer pairs targeting ITS1 
were used for PCR amplification under the following 
conditions: 95 °C for 2 min, followed by 30 cycles of 
denaturation at 95  °C for 30  s, primer annealing at 
50 °C for 30 s, and extension at 72 °C for 1 min. Final 
elongation was held at 72 °C for 5 min.

Resulting amplicons were gel purified, end 
repaired and Illumina specific adapter sequence were 
ligated to each amplicon (NEBNext Ultra II DNA 
library prep kit). Following quantification, the sam-
ples were individually indexed (NEBNext Multiplex 
Oligos for Illumina Dual Index Primers Set 1), and 
another AMPure XP bead-based purification step 
was performed. Amplicons were then sequenced 

on Illumina’s MiSeq platform, using a MiSeq v3 kit 
with 600 cycles (300 cycles for each paired read and 
12 cycles for the barcode sequence) according to the 
manufacturer’s instructions.  Demultiplexed 300  bp 
paired-end reads were obtained.

Bioinformatics and statistical analysis

FASTQC (Wingett and Andrews 2018) was used to 
assess the quality of raw sequence reads after which 
QIIME2 v2020.8 was used for quality control, con-
struction of a feature table, taxonomic classification 
and diversity analyses (Bolyen et  al. 2019). Briefly, 
the dada2 plugin (Callahan et  al. 2016) was used to 
trim and truncate poor regions of both the 16S and 
ITS raw reads. The truncation and trimming were set 
to –p-trim-left-f 8, –p-trim-left-r 8; and –p-trunc-len 
-f 290, –p-trunc-len-r 260, for the 16S; while for the 
ITS, parameters used were p-trim-left 22, –p-trunc-
len 299. Bacterial taxonomic assignment was done 
using feature-classifier classify-sklearn (Bokulich 
et  al. 2018; Pedregosa et  al. 2011), only including 
reference genes that were classified to at least genus 
level, by using SILVA v.138 97% database (Quast 
et al. 2013) pre-trained to V1-V3 region of 16S. For 
ITS, we used UNITE v8.2 reference database (Nils-
son et al. 2019) pre-trained to ITS1.

The resulting feature table was converted into 
biom format (using QIIME2’s export tool), and 
then imported into R (R Core Team 2020) using 
“qiime2R” (Bisanz 2018). For visualising the number 
of amplicon sequence variants (ASVs), genera, fami-
lies and orders present in the dataset we filtered out 
everything that was present only once at each level 
and then Venn diagrams were produced using func-
tion vennCounts from package “limma” (Ritchie et al. 
2015). Then, everything that was unassigned at fam-
ily level was filtered out.

For constructing dendrograms, primary component 
analysis (PCA) and heatmap data was transformed 
using CSS (cumulative sum scaling) by using a pack-
age “metagenomeseq” (Paulson et al. 2013). To per-
form a principal component analysis (PCA), we used 
package “recipes” (Kuhn and Wickham 2020), and 
annotated ellipses using a Khachiyan algorithm from 
package “ggforce” (Pedersen 2020). Dendrograms 
were constructed using a jaccard index from pack-
age “vegan” (Oksanen et  al. 2020), with a presence 
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absence standardization, and plotted using “ggtree” 
(Guangchuang et al. 2017).

Species diversity (Shannon) and richness (chao1) 
were calculated on untransformed and unfiltered 
data using “vegan” through the package “phyloseq” 
(McMurdie and Holmes 2013), while evenness was 
calculated as the Shannon index divided by the natu-
ral logarithm of the total number of species. All indi-
ces were tested for significance using a two tailed 
Student’s t-test.

Differential expression analysis was done on 
untransformed but filtered data based on a negative 
binomial distribution through “DESeq2” (Love et al. 
2014). The resulting log2fold changes were shrunken 
using the adaptive shrinkage estimator from package 
“ashr” (Stephens et al. 2020). Genera were deemed to 
significantly impact treatments if they had an adjusted 
p-value smaller than 0.05 (Wald test), and an abso-
lute log2fold change of over one, which was then 
visualised on a volcano plot modified from package 
“EnhancedVolcano” (Blighe et  al. 2020). The result 
from the differential expression analysis also was 
used to group data in the heatmap and label signifi-
cant genera in the PCA. All data was manipulated 
using “tidyverse” (Wickham et al. 2019) and visual-
ised using “ggplot2” (Wickham 2016).

Results

Composition and abundance of soil microbiome 
in maize monoculture and maize—Desmodium 
intercropping plots

When considering the total number of ASVs (taxo-
nomic units), a moderate divergence was observed 
between maize monoculture and intercropping plots. 
The difference becomes less pronounced at the order, 
family and genus levels with a high degree of over-
lap observed (Fig.  1). The number of fungal ASVs 
was higher than that of bacteria, indicating a higher 
richness of soil fungal communities. More bacteria 
ASVs (1934) were identified from monoculture plots 
than maize—Desmodium intercropping plots (1333 
ASVs). For fungal communities however, the number 
of ASVs was higher in intercropping (1262 ASVs) 
than monoculture plots (1085 ASVs). At the genus 
level, monoculture plots were composed of more bac-
teria than fungal taxa (195 vs 162 genera), whereas 

the fungal genera made the larger proportion in inter-
cropping plots than bacteria (284 vs 225 genera).

In spite of considerable/strong overlap, the two 
cropping systems separated clearly based on Jaccard 
dissimilarity index (dendrograms on Fig. 2a, b). Fur-
thermore, differential abundance analysis revealed 
several genera that were enriched in either monocul-
ture or intercropping plots. Bacterial taxa showed few 
differences in abundance between the cropping sys-
tems, whereas the abundance of fungal taxa showed 
stark contrasts. Fungal taxa were more enriched in 
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Fig. 1  Venn diagrams showing common and unique taxo-
nomic units as well as the degree of overlap at the genus, fam-
ily and order levels for a bacteria and b fungi communities in 
monoculture and maize—Desmodium intercropping plots
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intercropping than monoculture plots, whereas an 
opposite trend was observed for bacterial taxa (Fig. 2, 
for a full heatmap of all bacterial and fungal taxa, see 
supplementary Figs. 1 and 2).

Statistical analysis confirmed that bacteria con-
tributed little to the microbial divergence between 
the two treatments: only four bacterial genera were 

significantly abundant in monoculture while only one 
genus was significantly more abundant in maize—
Desmodium intercropping plots (Fig.  3a). Among 
fungal genera, the trend was reversed, with more gen-
era being enriched in maize—Desmodium intercrop-
ping (52 genera) than monoculture plots (16 genera) 
(Fig. 3b).

Fig. 2  Differential abun-
dance of bacteria genera 
(A) and fungal genera (B) 
in monoculture or maize—
Desmodium intercropping 
plots. The abundances were 
normalized by cumulative 
sum scaling (CSS). The 
dendrogram on the left 
was produced by using a 
Jaccard dissimilarity index, 
with a presence-absence 
standardization; each node 
corresponds to one sample
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Fewer bacterial taxa were classified at the genus 
level due to limited information in classification data-
bases, limiting further analysis and dissection of the 
findings. In contrast, a large proportion of fungal gen-
era were identified. In maize monoculture plots, sev-
eral fungal genera were enriched including  plant 
pathogens Curvularia, Parastagonospora and Tetra-
cladium as well as human opportunistic pathogens 
such as Aspergillus and Exserohilum. Only a few of 
the fungal genera enriched in monoculture plots are 
known for beneficial ecosystem services, notably the 
mycorrhizal genus Glomus and endophytic Laetisaria 
(Fig. 3b). In maize—Desmodium intercropping plots, 
noteworthy abundant fungal genera include sapro-
phytic fungi like Pithya, Albifimbria, Acremonium, 
Pseudorobillarda and Cristinia, mycorrhizal and 
endophytic fungi like Edenia, Acrocalyma and Colle-
totrichum, as well as fungal groups known for plant 
bio-protection such as Talaromyces, Penicillin, Clon-
ostachys and Trichoderma. A few pathogenic genera 
were also enriched in intercropping plots, for exam-
ple, Mycoleptodiscus, a genus of fungi reported to 
cause disease in legumes (Fig. 3b).

The impact of maize—Desmodium intercropping on 
diversity of soil microbial populations

Comparing overall diversity of soil microbial popula-
tions, no statistically significant difference was found 
among bacteria genera between monoculture and 
maize—Desmodium intercropping plots (Shannon 
index p = 0.246, Fig. 4). In contrast, fungal genera in 
maize—Desmodium intercropping were significantly 
more diverse compared to monoculture plots (Shan-
non index p = 0.047). Likewise, the richness of bac-
terial genera did not significantly differ between the 
two farming systems (Chao1 estimator p = 0.238), 
whereas that of fungal genera was significantly higher 
intercropping plots (Chao1 estimator p = 0.012). 
Evenness of both fungal and bacterial communi-
ties was not significantly different in both treatments 
(Fig. 4).

The impact of maize—Desmodium intercropping 
on the soil microbiome is also reflected in beta diver-
sity measures. As noted above, the impact on the two 
farming practices on bacterial populations communi-
ties is weaker compared to that on fungi. Although 
the PCA plots for both bacterial and fungal communi-
ties show clear separation based on cropping practice, 

the separation was much stronger in fungal taxa 
(Fig.  5b). Cropping practises contributed to a major 
extent to the variation observed, with fungal taxa 
showing a clear non-overlapping clustering pattern 
between monoculture and intercropping plots along 
PC1, which contributed to a total of 30% of the vari-
ation (Fig.  5b). In bacterial taxa the separation was 
clearest again on PC1, but the total contribution of 
PC1 to the variation was only 19% and did not fully 
separate the cropping practises (Fig. 5a).

Discussion

Abundance and differential abundance of taxa and 
their potential functional significance

A large proportion of the fungal taxa that were abun-
dant in maize—Desmodium intercropping plots 
appear to fulfil a saprophytic role, including Talaro-
myces, Trichoderma, Penicillium and Colletotrichum 
(see supplementary Table II). Presence of these taxa 
may indicate higher carbon sequestration in intercrop-
ping plots that is enhanced by the perennial intercrop-
ping system (Cong et al. 2015). Other enriched fungi 
genera likely confer more distinct ecosystem services, 
such as forming mycorrhizal (Ravnskov et al. 2006;) 
and endophytic associations with plant roots that 
promote plant growth activities through increased 
nutrient supply (Díaz-González et  al. 2020; Macías-
Rubalcava et al. 2008; Munasinghe et al. 2017). The 
fungi may also directly or indirectly stimulate produc-
tion of beneficial secondary metabolites and protec-
tion against pathogens and insect pests (Hiruma et al. 
2016; Zin and Badaluddin 2020). Indeed, effects can 
be indirect and intricate, for example,T. atroviride was 
shown to promote growth and herbivory resistance of 
maize against Spodoptera frugiperda, possibly linked 
to induction of the jasmonic acid pathway leading to 
heightened induced defence (Contreras-Cornejo et al. 
2018). In general, a positive correlation between soil 
microbe composition and productivity of plants above 
ground has been reported in most systems (Schnitzer 
et al. 2011), with positive effect on above ground bio-
diversity and biological control.

How direct and indirect microbial and plant inter-
actions in the rhizosphere contribute to the diverse 
ecosystem services observed in push–pull intercrop-
ping needs further study. For instance, a recent study 
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showed that maize grown in soil from push–pull plots 
displayed a higher induced-defence response, includ-
ing higher release of induced volatiles and lower her-
bivore damage compared to that growing on soil from 
monoculture (Mutyambai et  al. 2019). Soil micro-
biota may be a missing link explaining the observed 
differences in maize direct and indirect defence path-
ways. The increased abundance of several soil fungal 
groups noted in intercropping plots in this study, such 
as Edenia and Clonostachys species, is particularly 
noteworthy in this context. Species belonging to these 
genera are associated with increased plant health, 
biocontrol of plant diseases and increased resistance 
against herbivore damage on plants (Iqbal et al. 2018; 
Macías-Rubalcava et al. 2008; Poveda et al. 2020).

Recent papers reported lower incidences of maize 
ear rot and associated mycotoxins (aflatoxins and 
fumonisins) (Owuor et al. 2018) as well as lower rate 
of infection of maize kernels with Fusarium verticil-
lioides and Aspergillus flavus (Njeru et  al. 2020) in 
smallholder farmers’ push–pull plots compared to 
monoculture. Push–pull thus appears to promote 
food safety by reducing the risk of mycotoxins enter-
ing the human food chain, although the mechanisms 
remained unclear. Interestingly, in the current study, 
a lower relative abundance of A. flavus was indeed 
associated with maize—Desmodium intercropping 
cropping. However, no association was found for 
F. verticillioides, a mycotoxin producing fungus in 
maize. The earlier reported lower incidence of ear rot 
infections may thus be partially explained by the shift 
in relative abundance of key species in intercrop-
ping/push–pull plots, causing competition between 
taxa and lowering mycotoxin incidence levels. Sup-
pression of some taxa through fungal competition 
or biocontrol is a common phenomenon. Sarrocco 
et  al. (2019) found that Fusarium graminearum, a 
plant pathogen and mycotoxin producer, was con-
trolled by competition from other fungi, including 

Clonostachys, and Trichoderma, both of which were 
found in higher abundance in maize—Desmodium 
intercropping plots than monoculture in this study. 
Further research on how mycotoxin incidence in 
maize kernels can be reduced by interactions between 
mycotoxin producing fungi and other soil microbes 
in maize—Desmodium intercropping would help in 
devising strategies to increase food safety through 
more healthy plant production systems.

Diversity of cropping systems links to diversity in 
soil microbiome

In this study, long-term maize—Desmodium was 
associated with a higher diversity of soil microbial 
communities, with a stronger shift observed in fun-
gal populations. Other studies have reported a similar 
trend where cereal—legume intercropping increases 
overall diversity of soil microorganisms. Such obser-
vations have been made in wheat—soybean intercrop-
ping (Bargaz et  al. 2017), maize/wheat—faba bean 
intercropping (Wang et  al. 2020) and millet—mung 
bean intercropping (Dang et  al. 2020). While inter-
cropping with annual legumes may cause a temporary 
shift in the soil microbial profiles, the impact of per-
ennial crops and intercrops, such as Desmodium spp., 
on soil microbial diversity is likely to be stronger and 
more resilient.

Diversifying cropping systems, often by using 
legumes as an intercrop, were originally for pur-
poses other than increasing biodiversity, such as food 
security, pest control (push–pull), green manure, or 
to avoid negative plant-soil feedback and soil legacy 
(Stagnari et  al. 2017). However, ripple effects on 
biodiversity and ecosystem services have become 
apparent and maize—Desmodium intercropping and/
or push–pull farming is a good example of this. The 
system was initially designed to combat stem-borers 
of maize and sorghum, but additional ecosystem ser-
vices gradually emerged to include combating para-
sitic weeds of cereals (such as Striga spp.), increase 
soil nitrogen and carbon, and even reducing inci-
dence of mycotoxins in maize (Balaso et  al. 2019; 
Cook et al. 2007; Xu et al. 2018; Owuor et al. 2018; 
Njeru et  al. 2020). This study adds to these benefits 
by describing a diversification of the soil microbial 
communities, with a particularly strong shift in the 
composition of fungal taxa. By itself diversity in eco-
systems is generally regarded as increasing stability, 

Fig. 3  Volcano plots showing bacterial (A) and fungal (B) 
genus level features that are differentially and significantly 
abundant in monoculture and maize—Desmodium intercrop-
ping plots. Red dots represent genus entities that are signifi-
cantly abundant in each group with log2 fold change greater 
than 1. The grey and green dots represent the genus features 
whose abundance is similar between the two farming systems 
and the blue dots represents values where the p—value is sig-
nificant between the treatments, but where the log2 fold change 
is smaller than one

◂
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resilience and productivity (Prieto et al. 2015), mostly 
as a consequence of resource complementarity and 
functional redundancy (Cleland 2011; Rosenfeld 
2002).

Looking at bacterial populations, the discussion is 
limited by two factors; fewer taxa that are significantly 
enriched in either of the farming systems and limited 
classification (identification) at the genus level. Nev-
ertheless, the genus Nitrospira is one of the identi-
fied genera that was enriched in maize—Desmodium 
intercropping plots. Species of this genus are known 
for their ability to perform the complete nitrifica-
tion process (oxidation of ammonia) during nitrogen 
fixation, unlike other nitrifying bacteria in which the 
process occurs in two different organisms (Koch et al. 
2015). An enriched presence of Nitrospira spp. in 

intercropping plots suggests involvement in nitrogen 
fixation, potentially contributing to increased nitro-
gen supply in the soil and in turn leading to a higher 
maize yield as previously reported (Khan and Pickett 
2008).

Concluding remarks

This study has shown that long-term maize—
Desmodium intercropping causes a complex shift 
in composition of the soil microbiome compared to 
maize monoculture. Many functions of soil micro-
bial communities arise through complex interac-
tions and ecosystem services may therefore not be 
readily attributed to a single taxon, but arise as an 
emergent property of system, although exceptions 
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exist (Reva et  al.  2019). Given the increasing 
accessibility of sequencing technologies, metagen-
omics and other DNA-based analyses should be 
included as an integral part of intercropping stud-
ies for improvement of crop health and productiv-
ity. Metagenomics data can facilitate interpretation 

of complex community structure and composition 
in the light of plant productivity, plant health, and 
more broadly, ecosystem health.
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